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Abstract

3D mesh segmentation is essential in diverse domains, including autonomous sys-
tems, medical imaging, and cultural heritage preservation, where the goal is to
accurately classify individual components of a mesh. Traditional deep learning
methods struggle with unstructured 3D data, particularly when dealing with non-
manifold structures. Many existing techniques operate under the assumption of
manifold mesh configurations, which restricts their effectiveness in real-world ap-
plications characterized by complex geometries.

In response to this challenge, we introduce NoMeFormer, a transformer-based
framework designed to process any type of mesh without imposing structural con-
straints. This flexibility makes it particularly well-suited for non-manifold mesh
segmentation. Our approach represents each mesh face as a token, allowing the
model to utilize the order-invariant nature of transformers and learn meaningful
representations without being limited by manifold prerequisites.

A distinctive feature of NoMeFormer is the incorporation of Local-Global (L-G)
transformer blocks, which effectively address the quadratic complexity typically as-
sociated with transformer architectures. The model begins by aggregating features
within spatial clusters of mesh faces, which are formed using k-means clustering.
This is followed by a phase where long-range dependencies between faces are cap-
tured through global attention mechanisms. Such an architecture empowers the
model to harness both low-frequency and high-frequency contextual information,
enhancing its overall performance.

Our extensive experiments and ablation studies yield compelling results, NoMe-
Former based on geometrical features achieves a mean F1 score of 58.9% on the
Hessigheim 3D benchmark dataset. This demonstrates the framework’s capacity
to surpass the limitations imposed by manifold-based methodologies. As a result,
NoMeFormer presents a robust solution for semantic segmentation and classifica-
tion tasks involving non-manifold 3D meshes, showcasing its potential for broader
applications in various fields requiring advanced mesh analysis.
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Chapter 1

Introduction

1.1 Introduction
Semantic segmentation of 3D meshes has become an essential task across vari-
ous fields, driven by the growing dependence on 3D data for advanced modeling,
simulation, and analytical purposes. Compared to 2D images and other 3D repre-
sentations, 3D mesh segmentation offers distinct advantages, including geometric
connectivity, clear surface information, computational efficiency, and in case of
texture mesh detailed texture representation. In architecture, mesh segmenta-
tion facilitates detailed analysis of structural components, significantly benefiting
building information modeling (BIM) and retrofitting processes (Gimenez et al.,
2015). For autonomous vehicles, it enhances environmental perception, crucial for
navigation and obstacle avoidance (Herb et al., 2021; Fawole and Rawat, 2024; El-
Hakim et al., 2003). In the medical field, segmentation is vital for distinguishing
anatomical structures in diagnostic imaging and surgical planning (Batchelor et al.,
2012). Furthermore, In cultural heritage, semantic segmentation is instrumental
in damage detection and preservation. By accurately identifying and classifying
different regions of an artifact or historical structure (Agosto and Bornaz, 2017)
(Balletti and Ballarin, 2019), while the gaming and entertainment industries utilize
it to optimize rendering and animation pipelines. Overall, semantic segmentation
is indispensable for improving workflow efficiency and accuracy across 3D-centric
applications.

Deep learning has established itself as a dominant paradigm across various
domains, excelling in tasks such as segmentation, classification, and generative
modeling (LeCun et al., 2015; Ronneberger et al., 2015). Its superior performance
has positioned it as the leading framework for these applications.

While the majority of deep learning frameworks are tailored for 1D or 2D
inputs, extending these models to effectively learn feature representations from
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3D data has become an active area of research within both computer vision and
computer graphics (Ioannidou et al., 2017; Ahmed et al., 2018; Mildenhall et al.,
2021). Recent efforts have aimed at adapting deep learning frameworks for 3D
applications. However, applying traditional deep learning methods to 3D data is
not straightforward due to the varying representations of 3D structures including
volumetric grids, point clouds, and meshes.

Structured representations, such as volumetric and RGB-D data, offer rela-
tively straightforward model design pathways due to their inherent similarity to
images, allowing for direct adaptation of images architectures. However, these
formats present significant limitations, particularly in memory consumption and
computational complexity. The reliance on fixed grid resolutions constrains their
ability to represent fine geometric details, making them suboptimal for surface-
focused applications where precision is critical. Moreover, volumetric approaches
tend to oversample regions of low interest while undersampling high-detail areas,
leading to inefficient resource use and loss of critical surface information. As a
result, their applicability diminishes in scenarios where capturing intricate surface
geometry or fine-grained structural details is essential.

On the other hand, point clouds and meshes provide more efficient storage and
offer higher fidelity in surface detail representation. Point clouds consist of discrete
data points distributed in 3D space, capturing the geometric essence of an object’s
surface. Meshes take this further by connecting these points with edges and faces,
forming a continuous surface that enhances detail representation, making them
preferable for 3D tasks focused on precision and efficiency.

Despite the relative ease of generating point cloud data, the inherent lack of con-
nectivity introduces ambiguity in representing complex structures. Consequently,
meshes are often preferred as they offer smoother, more detailed visualizations of
objects, thereby facilitating a more accurate interpretation of shapes and features.
Beyond providing connectivity information, meshes also enable the representation
of surface textures through a process known as texture mapping. In this process,
textures are wrapped around the 3D mesh, imparting visual details that the mesh
alone cannot convey—such as color variations, surface intricacies (e.g., wood grain
or skin), and even simulated depth (e.g., bumps or grooves). Thus, meshes serve
as more informative representation of 3D objects compared to other forms of 3D
data representation. This enhanced representation is particularly beneficial for
tasks such as classification, where a comprehensive understanding of real-world
structures is critical for higher-level applications.

Although meshes as a representation for 3D data offer enhanced clarity re-
garding surface details and the geometry of three-dimensional objects, they pose
significant challenges in designing neural networks adept at processing such com-
plex data structures. To facilitate the integration of unstructured meshes into
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neural network architectures and to enhance adaptability, manifold meshes are
often utilized as input data. A manifold mesh is characterized by the property
that all faces sharing a vertex form either a disc or a half-disc (Edelsbrunner and
Harer, 2010). In simpler terms, each edge in a manifold mesh is shared by precisely
two faces, and each vertex is linked to a singular connected component of faces.
However, in many real-world applications, 3D meshes frequently do not conform
to these manifold criteria, presenting additional hurdles for effective representation
and processing.

In recent years, considerable research has been conducted in the field of 3D
computer vision (Hanocka et al., 2019; Feng et al., 2019; Milano et al., 2020; Liang
et al., 2022); however, only a limited number of studies have successfully tackled
the intricacies of processing 3D non-manifold textured meshes for tasks such as
semantic segmentation, classification, and generative modeling. To address this
pressing issue, the primary objective of this thesis is to develop a robust trans-
former based deep learning framework that can directly operate on non-manifold
textured meshes , leveraging the flexibility of transformer. This innovative frame-
work aims to serve as a foundational model for various applications, including se-
mantic segmentation, classification, self-supervised learning, and generative mod-
eling, thereby paving the way for advancements in handling complex 3D data in
practical scenarios.

Transformers initially emerged as a groundbreaking approach for NLP tasks
(Vaswani, 2017), introducing a novel paradigm that diverges from traditional mod-
els such as RNNs and CNNs. Unlike these earlier architectures, Transformers are
fundamentally rooted in the concept of attention, which allows the network to
assign varying weights to different inputs, irrespective of their order or topological
relationships. This property, known as order invariance, makes Transformers a
compelling choice for processing unstructured data.

Following the demonstrated superiority of the Transformer architecture in NLP,
substantial efforts have been devoted to adapting this framework for a wider array
of data types and tasks. This trend has increasingly extended into the realm of 3D
mesh representation learning (Liang et al., 2022). However, despite the emergence
of Transformer-based methods for 3D meshes, these approaches have not fully
capitalized on the order-invariant advantages of Transformers when handling non-
manifold meshes. like traditional neural networks, which necessitate structured
manifold meshes for representation learning, current Transformer-based methods
often still rely on manifold meshes. Furthermore, they frequently overlook the
incorporation of texture information, which is vital for achieving a comprehensive
understanding of 3D data.

To address the challenges and limitations of existing methods, we propose the
Non-Manifold Mesh Transformer. In our framework, each face of the mesh is
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treated as an independent token, allowing for flexible feature aggregation without
being constrained by the topological relationships between neighboring faces. This
representation enables the model to capture both local and global patterns in the
data, which is crucial for processing non-manifold meshes.

However, applying full attention across all faces in a mesh directly, as typical
transformers do, leads to quadratic complexity in terms of computational cost,
making such an approach infeasible for large-scale 3D data. To overcome this
limitation while effectively learning both low- and high-frequency patterns within
the data, inspired by (Chu et al., 2021) we introduce a two-step process, termed
Local-Global (L-G) Transformer Blocks. This design reduces the computational
burden by first focusing on local feature extraction within clusters of faces, fol-
lowed by a global attention mechanism that captures broader context across the
entire mesh. Through this hierarchical attention mechanism, our method preserves
the rich details inherent in non-manifold meshes while maintaining computational
efficiency.

In the first step, termed the Local Transformer Block, features are aggregated
within patches using a self-attention mechanism applied to faces within each patch.
These patches are generated by clustering adjacent faces in the 3D mesh through
k-means clustering, ensuring the preservation of the local geometric structure. By
focusing on localized regions of the mesh, this approach enables the model to
effectively capture fine-grained variations and detailed local patterns—essential
for addressing intricate geometric and textural differences in the data. Moreover,
the Local Block summarizes the features within each patch into a single learnable
token, referred to as the cluster token, which encapsulates the local representation
for subsequent stages of the model.

In the second step, known as the Global Transformer Block, the cluster tokens
generated by the local blocks are processed through an attention mechanism that
allows each token to attend to the aggregated representations of other patches.
This step enables the model to capture global contextual information across the
entire mesh, facilitating the integration of long-range dependencies between spa-
tially distant regions. The combined local and global attention mechanisms provide
the model with a comprehensive understanding of both fine details and broader
structural patterns.

Ultimately, the model performs semantic segmentation by predicting a label
for each face of the mesh. The network is optimized through backpropagation by
minimizing a suitable loss function, ensuring that it learns to associate each face
with its corresponding semantic class. This two-step process efficiently balances
local detail extraction with global context integration, making it highly effective
for tasks requiring precise semantic understanding of non-manifold meshes.

In summary, our contributions can be outlined as follows:
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• We propose a framework utilizing a transformer network capable of process-
ing arbitrary 3D meshes without the necessity of imposing constraints such
as manifold requirements. This can serve as a backbone for various tasks,
such as segmentation and classification.

• To address the quadratic complexity of transformers, we present a novel
approach that first clusters faces based on their spatial proximity to patches
and then learns feature aggregation within local patches. Subsequently, a
global block is implemented to capture global context and facilitate long-
range interactions.

• We design a distinct branch to provide per-face feature representations to
the model. This new branch integrates both geometrical and textural infor-
mation, addressing the dimensional disparity between the two. By ensuring
equal representation of both information types, this branch enhances the
model’s overall feature representation capability.

• We train the model under various configurations and conduct a compre-
hensive ablation study to evaluate the effectiveness of the proposed model
components and input features.
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Chapter 2

Literature Review

2.1 Related Work
In this section, we first present a brief review of deep learning-based 3D data
processing techniques that utilize representations other than meshes, such as point
clouds and voxels. Afterwards, we provide a detailed survey of research focused
on deep learning-based 3D mesh analysis and processing, with particular emphasis
on semantic segmentation.

2.1.1 Deep Learning on 3D data

Many works have addressed the design and development of deep learning frame-
works tailored for 3D data processing. These approaches can be broadly catego-
rized based on the type of 3D data representation used, such as voxel grids, point
clouds, meshes, and textured meshes.

Early approaches to processing 3D data involved representing it as a voxel
grid. This representation, analogous to 2D image structures, enabled the straight-
forward application of CNNs for 3D data analysis (Maturana and Scherer, 2015;
Wu et al., 2015). Voxel-based approaches, however, are hindered by high memory
consumption and computational inefficiency, especially when dealing with high-
resolution data.While some efforts, such as OctNet (Riegler et al., 2017), have
been made to address these challenges by hierarchically partitioning 3D space into
octrees—where each octree splits the space based on data density and concentrates
computations on relevant regions—more recent work has shifted toward process-
ing point clouds. which offers a more memory-efficient and flexible representation
that captures the raw geometry of 3D objects (Qi et al., 2017a,b; Qian et al., 2022;
Hu et al., 2020). With the demonstrated success of transformers across various
domains and their inherent order-invariant property, which obviates the need to
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define the order of point cloud data, this has led researchers to explore their ap-
plication in point cloud processing (Guo et al., 2021; Yu et al., 2022). However,
the aforementioned methods are not capable of processing 3D textured meshes.
In contrast, textured meshes combine geometric and appearance data, capturing
both the object’s shape and detailed surface information, such as color and tex-
ture. This richer representation significantly enhances feature learning for tasks
like damage detection, surface condition analysis, and object recognition in com-
plex environments. Furthermore, the vertex connectivity in textured meshes pro-
vides a coherent structure for feature aggregation, enabling more accurate spatial
relationship modeling. This facilitates superior context-aware analysis, reducing
ambiguities in learning geometric and visual features, and outperforming point
clouds or voxel grids in tasks that demand high-fidelity surface information.

2.1.2 3D meshes

Due to the irregular structure of mesh data, many traditional deep learning mod-
els, originally designed for regular grid-based inputs, cannot be directly applied.
This limitation has driven significant interest in adapting these models, as well
as advancing geometric deep learning to address such data modalities (Bronstein
et al., 2021). Researchers in this field focus on developing novel methods tailored
to handle non-Euclidean structures, such as meshes. A primary objective of this
section is to explore mesh processing techniques and representation learning for
tasks like classification and semantic segmentation, which have been tackled using
diverse methodologies and perspectives.

Whereas Laupheimer (2022) proposes to transfer the problem to point cloud
or image classification by specific transfer functions, significant efforts have been
made to extend concepts of CNNs and pooling layers to mesh processing. The pi-
oneering work (Masci et al., 2015) first introduced a notion of convolution for non-
Euclidean domains. The authors extended traditional CNNs to curved surfaces,
represented as Riemannian manifolds, by employing geodesic polar coordinates for
local patches instead of the standard grid structure used in Euclidean space. This
approach involves defining convolution operations based on geodesic distances,
thereby respecting the intrinsic geometry of the surface. MeshNet (Feng et al.,
2019) was proposed as a deep learning network designed specifically to operate on
3D mesh faces. It incorporates two key descriptors: a spatial descriptor, which
captures positional information via the center of gravity (COG) of each face, and a
structural descriptor, which extracts geometric features. The structural descriptor
relies on (1) face-rotate convolution to encode internal face geometry and (2) face-
kernel correlation to capture relationships between neighboring faces. MeshNet
also enhances spatial feature aggregation through mesh convolution layers that
expand the receptive field by leveraging neighboring face indices.
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Hu et al. (2022) continue the effort to adapt CNNs for mesh processing, with
a particular focus on pooling layers to expand the receptive field. Their approach
utilizes subdivision surfaces, specifically Loop subdivision, to construct a fine-to-
coarse hierarchy, analogous to pooling operations in CNNs.

MeshCNN (Hanocka et al., 2019) presents a different paradigm in mesh-based
CNNs by focusing on edges as the primary entities for classification. In this ap-
proach, convolution operations are defined as learnable parameters are applied to
the four edges incident to a given edge. To expand the receptive field MeshCNN
employs an edge collapse pooling mechanism, where the network learns which edges
to collapse, thereby dynamically adjusting the topology to improve the receptive
field and hierarchical feature learning.

PD-Mesh (Milano et al., 2020) considers the mesh as a graph structure and
extends pointwise convolution to mesh processing. The authors construct two mesh
graphs: one where nodes represent faces and another where nodes represent edges.
Features from adjacent nodes in both graphs are aggregated using (GAT). To
mimic pooling operations, they apply a mesh simplification technique. MeshWalker
(Lahav and Tal, 2020) defines a random walk on the vertices of the mesh and
leverages the sequential nature of this process by using recurrent neural networks
(RNNs) to learn mesh representations.

Previous methods impose constraints on input meshes, such as requiring them
to be manifold. which restricts the network’s ability to process arbitrary 3D
meshes, particularly non-manifold geometries. Few works address the challenging
constraints imposed by previous methods that assume a manifold mesh. Lapla-
cian2Mesh (Dong et al., 2023) attempts to alleviate this by transforming the mesh
into the spectral domain using the Laplacian matrix of the mesh, representing
the mesh with the k eigenvectors of this matrix. The network is then trained in
this spectral domain, followed by a transformation back to the spatial domain.
Although this method can handle non-manifold meshes, it is primarily designed
for vertex segmentation rather than face segmentation. Additionally, the transfor-
mation to the spectral domain imposes limitations on data representation. Diffu-
sionNet (Sharp et al., 2022) is designed around three key components: Pointwise
Perceptrons, Learned Diffusion, and Spatial Gradient Features. The core concept
involves optimizing the steps in the diffusion equation to effectively learn the diffu-
sion process. Additionally, a Multi-Layer Perceptron (MLP) is employed to process
the raw features of each vertex alongside spatial gradient features, enhancing di-
rectional filtering. While this network can process various types of meshes, feature
aggregation is limited to continuous and local fields of view due to its diffusion
equation-based approach.

Inspired by the transformative impact of scaling Transformer models in NLP,
other disciplines have also begun shifting towards Transformer architectures, aim-

13



ing to replace traditional CNNs for enhanced performance across various tasks.
This shift has spurred the development of masked autoencoder networks (He et al.,
2022) for self-supervised training of mesh data (Liang et al., 2022). These networks
can be effectively utilized for downstream tasks, such as semantic segmentation.
To address the quadratic complexity associated with attention mechanisms, this
work leverages patches of data similar to those used in ViT (Dosovitskiy et al.,
2020). However, Due to the irregular structure of meshes, traditional patching
methods based on pixel grids cannot be directly applied. To address this, the au-
thors leverage the MAPS algorithm (Lee et al., 1998), which aims to merge mesh
faces to create a coarser representation. This approach treats the merged faces as
single patches, concatenating their features and using patch embeddings to create
tokens. However, this mesh simplification method introduces constraints on the
input mesh and faces challenges when processing non-manifold meshes.

To our knowledge, no prior work has effectively adapted deep neural networks
for processing non-manifold meshes. While considerable research has been con-
ducted on the semantic segmentation and classification of 3D meshes with promis-
ing ac- curacy, nearly all methods impose manifoldness as a constraint on input
meshes. Methods that do bypass this requirement often suffer from limitations,
including spectral domain information loss, constrained local feature aggregation,
or discontinuities in feature representation. The most closely related work that
integrates transformers is (Liang et al., 2022), yet it, too, necessitates manifold-
ness for generating patches. To address these limitations, we leverage the unique
property of transformers that permits order-invariant processing, eliminating the
need for structural constraints on mesh input. Further, to make the trans- for-
mer applicable for large meshes, we draw inspiration from the two-step processing
strategy used in (Chu et al., 2021) for efficient image processing with transformers.
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Chapter 3

Background

In this section, we provide the necessary context and foundational knowledge re-
quired to understand the research presented in this thesis. This section is divided
into two parts. The first part provides a review of the fundamentals of neural
networks, followed by a detailed discussion on transformer networks. The second
part focuses on 3D texture mesh representation and its components.

3.1 Artificial Neural Networks
The concept of ANNs is inspired by the structure of the human nervous system.
The nervous system comprises neurons and synapses, which are interconnected to
facilitate communication. Neurons transmit information through synapses, which
act as junctions between them. The inception of ANNs can be traced back to Frank
Rosenblatt’s work on the Perceptron, an early neural network model designed for
classifying data. The Perceptron operates by computing a weighted sum of inputs
and applying a step activation function, making it suitable for linearly separable
problems. During training, the model adjusts its weights to minimize errors.

A major limitation of Rosenblatt’s Perceptron arises from its single-layer ar-
chitecture. Initially, it was believed that this limitation would persist even with
the addition of more layers, a viewpoint shared by some early pioneers in the
field. However, this assumption was later proven incorrect, as demonstrated by
the effectiveness of MLP.

In mathematical terms, ANNs can be conceptualized as functions that trans-
form an input vector into an output vector. Specifically, this can be expressed as
y = f(x; θ), where θ denotes the network’s parameters. The network’s objective
is to learn the optimal values for θ to approximate the desired function as closely
as possible. These functions encompass various components and methodologies
which will be elaborated upon in the subsequent sections.
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3.1.1 Structure of ANNs

The fundamental architecture of an ANN comprises three main types of layers:

• Input Layer: This is the initial layer of the network, responsible for receiv-
ing the raw data or input features. Each node in the input layer corresponds
to a feature of the input data.

• Hidden Layers: Positioned between the input and output layers, these lay-
ers may consist of one or more stages. Each hidden layer comprises neurons
that apply nonlinear transformations to the data. Neurons in these layers
use activation functions to process the weighted sum of their inputs.

• Output Layer: The final layer of the network, which produces the model’s
output. The configuration of the output layer is determined by the specific
task (e.g., classification, regression). For classification tasks, it commonly
employs a softmax function to generate probabilities for each class.

3.1.2 Neurons and Activation Functions

• Neurons: Each neuron in an ANN is a computational unit that performs
a weighted sum of its inputs, adds a bias term, and then applies an activa-
tion function to the result. Mathematically, the output of a neuron can be
expressed as:

y = ϕ

(
n∑

i=1

wixi + b

)
(3.1)

where wi represents the weights, xi are the input values, b is the bias, and ϕ
is the activation function.

• Activation Functions: Activation functions introduce non-linearity into
the network, allowing it to learn complex patterns. Common activation
functions include:

– Sigmoid: ϕ(x) = 1
1+e−x — Maps the output to a range between 0 and

1.

– ReLU: ϕ(x) = max(0, x) — Outputs the input directly if it is positive;
otherwise, it outputs zero.

– Tanh: ϕ(x) = ex−e−x

ex+e−x — Maps the output to a range between -1 and 1.
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3.1.3 Learning Process

In any ANN, a set of learnable parameters is at its core. The training process
refers to the procedure of adjusting these parameters to find their optimal values
for a given task. In the context of supervised learning, "optimal" specifically
refers to minimizing the discrepancy between the network’s predictions and the
corresponding labels for the input data. This is typically achieved through the
following steps:

• Forward Propagation: During forward propagation, the input data x ∈
Rn is passed through each layer of the network to generate an output. For a
given layer l, the output z(l) is computed as:

z(l) = W(l)a(l−1) + b(l)

where W(l) is the weight matrix, a(l−1) is the activation from the previous
layer, and b(l) is the bias vector. The weighted sum z(l) is then passed
through an activation function σ, yielding the output of the layer:

a(l) = σ(z(l))

This process is repeated layer by layer until the final output ŷ is produced
at the output layer.

• Loss Function: In machine learning, the loss function, denoted as L(y, ŷ),
quantifies the discrepancy between the predicted output ŷ and the true tar-
get values y. The loss function used by a machine learning algorithm often
decomposes as a sum over training examples The specific formulation of L is
contingent upon the problem’s characteristics, the structure of the dataset,
and the machine learning model employed. Consequently, the design and se-
lection of appropriate loss functions L play a critical role in the optimization
process and remain a pivotal focus of research in machine learning.

In classification and semantic segmentation tasks, cross-entropy loss is typi-
cally adopted as the objective function due to its capability to quantify the
divergence between the predicted probability distribution and the ground-
truth distribution. Cross-entropy effectively penalizes erroneous predictions
based on their confidence levels, thereby aligning the model’s predictions
with the correct class probabilities. By minimizing cross-entropy, the model
is encouraged to maximize the log-likelihood of the true class labels, yielding
sharper probability outputs. This formulation is particularly advantageous
in segmentation tasks, where per-pixel classification accuracy is paramount.

17



Furthermore, cross-entropy loss is differentiable, facilitating efficient opti-
mization via gradient descent methods. Its robustness and interpretability
make it a preferred choice across a broad range of segmentation architec-
tures. Mathematically, for a given set of predictions ŷi and true labels yi,
the cross-entropy loss function L is defined as:

L = −
N∑
i=1

yi log(ŷi)

-

where N is the number of samples, yi is the true label, and ŷi is the predicted
probability for the i-th sample. Cross-entropy is effective in multi-class clas-
sification problems, where it penalizes the incorrect predictions by taking
into account the log probability of the correct class.

For semantic segmentation of mesh, where face-wise classification is involved,
cross-entropy is applied across all faces in the mesh Given a face f , the face-
wise cross-entropy loss can be formulated as:

Lface = −
C∑
c=1

ycf log(ŷ
c
f )

where C is the total number of classes, ycp is the ground truth label for class
c at face f , and ŷcf is the predicted probability for class c at face f . The
overall loss for the entire image is the sum of the face-wise losses.

L = −
N∑
i=1

C∑
c=1

yci log(ŷ
c
i )

• Backpropagation: Back-propagation is often misunderstood as the entire
learning algorithm for neural networks, but it specifically refers to the method
of computing gradients for the parameters. It efficiently calculates the partial
derivatives of the loss function with respect to each parameter by applying
the chain rule in reverse order from the output to the input.

Consider a multi-layer neural network with L layers. Let a(l) denote the
activations at layer l, and W(l) and b(l) represent the weights and biases for
layer l. As the forward pass computes z(l) and a(l). In the back-propagation
step, we compute the gradients with respect to the parameters by propagat-
ing the error backwards. Starting with the output layer, the error term δ(L)

for the final layer L is:
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δ(L) =
∂J

∂a(L)
⊙ σ′(z(L))

where J is the cost function, ⊙ denotes element-wise multiplication, and σ′

is the derivative of the activation function.

For earlier layers l = L− 1, L− 2, . . . , 1, the error term is propagated as:

δ(l) = (W(l+1))T δ(l+1) ⊙ σ′(z(l))

The gradients of the cost function with respect to the weights and biases for
each layer are then given by:

∂J

∂W(l)
= δ(l)(a(l−1))T

∂J

∂b(l)
= δ(l)

Back-propagation efficiently computes these gradients for each layer, allowing
the learning algorithm to update the parameters during training.

• optimization: Deep learning algorithms typically rely on some form of op-
timization. In essence, optimization involves adjusting the variable x to
either minimize or maximize a specific function f(x). Most often, these opti-
mization tasks are framed as minimizing f(x), since minimization is a more
common and convenient formulation. When the objective is to maximize
f(x), this can still be approached using minimization techniques by instead
minimizing −f(x), effectively transforming the maximization problem into a
minimization one. The process of optimization is crucial because it governs
the learning dynamics in neural networks, influencing how models converge
to optimal solutions during training.

Optimization algorithms that rely on gradients are referred to as first-order
optimization algorithms. In contrast, algorithms that also utilize the Hessian
matrix, such as Newton’s method, are classified as second-order optimization
algorithms . Among these, gradient descent is the dominant algorithm for
deep learning models, as it is a first-order iterative algorithm.

We consider all the learnable parameters of the model as a vector W. The
idea behind gradient descent is to treat the loss function as a surface governed
by the model. By iteratively taking small steps in the negative direction of
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the gradient, we can converge to the minimum of the surface, which corre-
sponds to the minimum of the loss function. Mathematically, this can be
expressed as:

Wt+1 = Wt − η∇L(Wt)

where Wt represents the parameters at iteration t, η is the learning rate, and
∇L(Wt) is the gradient of the loss function with respect to the parameters
at iteration t.

In this formula, the gradient reveals the direction, while the learning rate
sets the step size in that direction. In the SGD learning algorithm, it is
necessary to specify a value for the learning rate parameter η. If η is very
small, the learning process will proceed slowly. Conversely, if η is set too
high, it can lead to instability in the training process. In practice, the best
results are obtained by using a larger value for η at the start of training and
then reducing the learning rate over time Bishop and Bishop (2023).

In gradient descent, we compute the gradient of the loss function with re-
spect to the entire dataset. However, for large datasets, this process can be
computationally expensive. Stochastic gradient descent mitigates this issue
by approximating the gradient using only a small batch or a single training
example at each iteration. The update rule for SGD can be written as:

Wt+1 = Wt − η∇L(Wt;x
(i))

Here, x(i) represents a single training example (or a mini-batch) from the
dataset. This also introduces some noise into the updates, allowing for more
frequent updates but potentially more erratic convergence behavior com-
pared to full gradient descent.

3.1.4 Multi-Layer Perceptron (MLP)

The MLP represents one of the foundational architectures in artificial neural net-
works. Comprising an input layer, one or more hidden layers, and an output
layer as shown in figure 3.1, the MLP employs a fully connected topology, where
each neuron in a given layer is connected to every neuron in the subsequent layer.
This architecture enables the MLP to learn complex, non-linear representations by
iteratively adjusting the weights of these connections through backpropagation.

Each neuron within the network applies a weighted sum of its inputs, followed
by a non-linear activation function, such as the rectified linear unit (ReLU) or
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sigmoid function. The use of these activation functions imparts the MLP with its
non-linear capabilities, essential for capturing complex relationships in the data.

Figure 3.1: A MLP architecture showcasing multiple interconnected layers of neu-
rons, where each layer transforms the input data through weighted connections
and activation functions. Image source: (Vidhya, 2020)

Mathematically, the operation of an MLP can be formalized as follows. Given
an input vector x ∈ Rn, the output of a hidden layer is computed as:

h = σ(Wx+ b) (3.2)

where W ∈ Rm×n represents the weight matrix, b ∈ Rm denotes the bias
term, and σ(·) is the non-linear activation function. The final output is derived
by propagating the hidden layer activations through subsequent layers in a similar
fashion. The adjustment of weights and biases is achieved via gradient descent
methods, with the gradients computed using backpropagation.

MLPs are often used in conjunction with other architectures, such as convolu-
tional neural networks (CNNs) or transformers.

3.1.5 Attention mechanism

Attention has been a pivotal development in deep learning. Since its introduction,
the effectiveness of attention mechanisms has led to substantial progress across
various domains in artificial intelligence, with many advancements building upon
this module. The origin of attention traces back to recurrent neural networks
(RNNs) and their difficulty in retaining information over long sequences, partic-
ularly in encoder-decoder architectures for machine translation. In these models,
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the encoder would only pass the final hidden state to the decoder, which resulted
in the loss of important information as sequence length increased.

To address this issue, the concept of attention mechanisms was first introduced
by Bahdanau et al. Bahdanau (2014) and later Luong (2015). This attention
framework allowed the decoder to focus on different parts of the input sequence,
rather than relying solely on the final hidden state. Initially, these attention
models were built on top of the RNN hidden states and were not independent
frameworks. It wasn’t until the introduction of self-attention, specifically scaled
dot-product attention, in the Transformer model Vaswani (2017) that attention
became a standalone mechanism, revolutionizing deep learning architectures.

Self-attention is a mechanism designed to enable models to focus on different
parts of an input sequence during the processes of encoding or generating outputs.
Unlike conventional conventional representation learning methods such as MLPs,
CNNs. In traditional methods, learnable parameters directly function as weights
for feature aggregation. In contrast, self-attention dynamically computes these
weights based on the pairwise similarities between input elements, which, from
this point onward, we refer to as tokens. The input tokens are projected into a
different space through learnable parameters, and their pairwise similarities are
computed using dot products. These similarities then determine the attention
weights for aggregating features.

Input Representation

Given an input sequence X = [x1, x2, . . . , xn], where each xi ∈ Rd is a d-dimensional
representation of the i-the element in the sequence, self-attention aims to produce
an output sequence of the same length, where each output oi is computed as a
weighted sum of the inputs.

Key, Query, and Value Vectors

Each input element xi is projected into three different vectors: a query vector qi, a
key vector ki, and a value vector vi. These projections are linear transformations
of the input:

qi = Wqxi, ki = Wkxi, vi = Wvxi

where Wq,Wk,Wv ∈ Rdk×d are learned weight matrices that map the input
dimension d to the attention dimension dk. These vectors are collectively referred
to as the query matrix Q, key matrix K, and value matrix V , where:

Q = [q1, q2, . . . , qn]
⊤, K = [k1, k2, . . . , kn]

⊤, V = [v1, v2, . . . , vn]
⊤
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Scaled Dot-Product Attention

The next step is to compute the attention weights that indicate how much focus
should be placed on other elements in the sequence when computing the repre-
sentation of each element. For each query qi, the attention weights are computed
by taking the dot product with each key kj in the sequence, followed by a scaling
factor and a softmax operation:

Attention(qi, K) = softmax
(
qiK

⊤
√
dk

)
Here, qiK⊤ represents the dot product between the query vector qi and each

key vector kj. The result is scaled by
√
dk to prevent the dot products from

becoming too large, which could make the softmax function produce extremely
small gradients during training.

The softmax function normalizes the attention scores so that they sum to 1:

αij =
exp

(
qik

⊤
j√
dk

)
∑n

j=1 exp
(

qik⊤j√
dk

)
Here, αij represents the attention weight that element i places on element j.

This weighting is applied to the value vectors.

Output Calculation

Once the attention weights are obtained, the output for each element is computed
as the weighted sum of the value vectors vj:

oi =
n∑

j=1

αijvj

Thus, the output sequence O = [o1, o2, . . . , on]
⊤ is computed as:

O = Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V

Cross-Attention Mechanism

The cross-attention mechanism operates similarly to self-attention, but instead of
deriving the queries, keys, and values from the same source, the queries come from
one set of inputs (such as a later stage in a model), while the keys and values are
derived from a different set of inputs (such as an earlier stage or another model
component).
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Mathematically, cross-attention is computed as:

CrossAttention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

In cross-attention:

• Q ∈ Rm×dk is the query matrix derived from one set of inputs (where m is
the length of the target sequence).

• K ∈ Rn×dk and V ∈ Rn×dv are the key and value matrices, respectively,
derived from the different set of inputs (where n is the length of the source
sequence).

• dk and dv are the dimensions of the key and value representations, respec-
tively, and the softmax function is applied to the scaled dot-product between
queries and keys.

3.1.6 Transformer Networks

The Transformer network, first introduced in Vaswani (2017), is fundamentally
built upon the attention mechanism. While attention is the core of the network, the
term ’Transformer’ does not solely imply attention. In fact, the model comprises
several distinct components, which will be reviewed in this section.

A Transformer is composed of an encoder-decoder structure, where both the
encoder and decoder consist of multiple identical layers. Each encoder layer has
two sub-layers: a multi-head self-attention mechanism and a position-wise fully
connected feed-forward network. The decoder is similar to the encoder but con-
tains an additional third sub-layer, which performs multi-head attention over the
encoder’s output. Although the original transformer model consists of both an
encoder and a decoder, later developments have led to the use of either the en-
coder or the decoder independently in various learning models. In the context of
this thesis, the model is built primarily using the transformer encoder as shown in
figure 3.2.

The input sequence to the transformer can be represented as a matrix X ∈
Rn×dmodel , where n is the sequence length and dmodel is the dimensionality of each
token’s representation. For example, in NLP, n would correspond to the number
of words in a sentence and dmodel is the dimensionality of word embeddings.

Input Embedding

Given a sequence of input tokens [x1, x2, . . . , xn], where each xi represents a discrete
token (such as a word or symbol in the case of text), the first step is to map each
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Figure 3.2: Transformer Encoder

token to a dense vector representation, often referred to as an embedding. Each
token xi is mapped to an embedding ei ∈ Rd, where d is the dimension of the
embedding space.

ei = Embedding(xi)

Thus, the input sequence X becomes a sequence of embeddings E = [e1, e2, . . . , en],
where E ∈ Rn×d.
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Multi-Head Attention

To capture multiple types of relationships between tokens, the Transformer uses
multi-head attention. Instead of applying self-attention once, it is applied h times
in parallel, where each head learns different attention distributions. Each head has
its own set of learned parameters for Q, K, and V , and the results are concatenated
and linearly transformed.

The multi-head attention is given by:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

headi = Attention(QWQ
i , KWK

i , VWV
i )

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , and WO ∈

Rhdv×dmodel are learnable projection matrices.
By using multiple attention heads, the model can attend to different parts of

the sequence and capture a richer set of relationships between tokens.

Positional Encoding

Since the Transformer does not inherently model the order of tokens, positional
encodings are added to the input embeddings to provide information about the
relative or absolute positions of tokens in the sequence. The positional encodings
are computed using sinusoidal functions:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
PE(pos,2i+1) = cos

( pos

100002i/dmodel

)
where pos is the position of the token in the sequence, and i is the dimension

of the positional encoding.
The positional encoding PE ∈ Rn×dmodel is added to the input embeddings to

form the final input to the Transformer. It is important to note that, since the 3D
position of each vertex is already part of the input features, our model does not
include positional encoding.

Feed-Forward Network

Each layer of the Transformer includes a position-wise fully connected feed-forward
network applied independently to each token. The feed-forward network consists
of two linear transformations with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2
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where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel are learned weight matrices, and
b1 and b2 are learned biases. Typically, dff is larger than dmodel, such as dff = 2048
and dmodel = 512.

Residual Connections and Layer Normalization

To facilitate training and improve gradient flow through the network, the Trans-
former uses residual connections around each sub-layer (self-attention and feed-
forward network). A residual connection adds the input to the output of the
sub-layer, followed by layer normalization:

zoutput = LayerNorm(zinput + sub-layer(zinput))

where LayerNorm is a layer normalization function that stabilizes the training
process by normalizing the output across the feature dimensions.

Complexity Analysis

The time complexity of the attention mechanism is O(n2dmodel) due to the com-
putation of attention scores between all pairs of tokens, making the vanilla Trans-
former inefficient for long sequences. Various efficient Transformer variants have
been proposed to mitigate this issue by reducing the quadratic complexity.

This formal description of the Transformer network highlights its core compo-
nents and mathematical underpinnings. The transformer architecture has paved
the way for highly effective models in many domains, and its design continues to
inspire new research into more efficient and scalable deep learning architectures.

3.2 3D Mesh Representation
A 3D mesh is a geometric data structure that represents a three-dimensional object
using vertices, edges, and faces. Formally, a mesh M can be defined as a tuple:

M = (V,E, F )

where:

• V = {v1, v2, . . . , vn} is the set of vertices in R3, representing the spatial
coordinates of the mesh points such that each vi = (xi, yi, zi).

• E = {e1, e2, . . . , em} is the set of edges, which connect pairs of vertices. An
edge ej is defined as ej = (vi, vk), where vi, vk ∈ V .
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• F = {f1, f2, . . . , fp} is the set of faces, typically represented as triangles.
Each face fl is defined by an ordered triplet of vertices (vi, vj, vk), which
form a plane in 3D space.

There are two primary types of 3D meshes: triangular meshes and quadrilateral
meshes. Triangular meshes are the most common due to their simplicity and
computational efficiency.

3.2.1 Geometry of Vertices and Faces

Each vertex vi is defined by its position in 3D space:

vi = (xi, yi, zi) where xi, yi, zi ∈ R

The surface normal n for a triangular face f composed of vertices (vi, vj, vk) can
be calculated using the cross product of the two edge vectors vij and vik, where:

vij = vj − vi, vik = vk − vi

The normal vector n is then:

n =
vij × vik

∥vij × vik∥
This normal vector n provides important information about the orientation of

the face relative to the 3D space and is essential for surface rendering, lighting
computations, and mesh transformations.

3.2.2 Connectivity and Topology

The connectivity of the mesh refers to how the vertices and edges are connected
to form faces. The mesh’s topology is typically described by the adjacency relations
between vertices, edges, and faces. The Euler characteristic χ is a fundamental
topological property, given by:

χ = V − E + F

This invariant holds for most types of surfaces and can be used to verify the
consistency of a 3D mesh. For example, a simple convex polyhedron will have
χ = 2.
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3.2.3 Surface Area and Volume Calculation

The total surface area A of the mesh can be computed by summing the areas of
individual triangular faces. The area Af of a triangular face with vertices vi, vj,
and vk is given by:

Af =
1

2
∥vij × vik∥

Thus, the total surface area A of the mesh is:

A =
∑
f∈F

Af

For a closed 3D mesh, the volume V enclosed by the surface can be approx-
imated using the divergence theorem or by summing the signed volumes of the
tetrahedra formed between each triangular face and a common reference point v0:

V =
1

6

∑
f∈F

(vi × vj) · vk

where vi,vj,vk are the vertices of the face.

3.2.4 Non-Manifold Mesh

A non-manifold mesh is a geometric structure that does not follow the regular
properties of a 2-manifold surface. In a 2-manifold mesh, each edge is shared by
exactly two faces, and each vertex has a single neighborhood that is homeomorphic
to a disk. In contrast, non-manifold geometries may exhibit features such as:

• Non-manifold vertices: A vertex is shared by multiple disconnected re-
gions or surfaces, causing ambiguity in defining a single normal direction or
local neighborhood.

• Non-manifold edges: An edge is shared by less or more than two faces,
violating the 2-manifold assumption.

• Mixed-dimensional elements: Meshes that contain elements of varying
dimensions, such as combining surfaces and line segments, are considered
non-manifold.

In practice, non-manifold meshes arise in various scenarios, such as outdoor
3D data , complex CAD models, medical imaging data, or topologically intricate
objects that cannot be represented with a simple manifold structure.
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Formal Definition and Properties

Formally, a non-manifold mesh M = (V,E, F ) is characterized by the failure of
certain conditions that are satisfied by 2-manifolds:

• Non-manifold vertex: A vertex v ∈ V is non-manifold if it is shared by more
than one set of connected neighborhoods, meaning that the local neighbor-
hood of v is not homeomorphic to a 2D disk. For a vertex vi, the set of
incident edges Ei and faces Fi forms disjoint sets of connected components.

• Non-manifold edge: An edge ej = (vi, vk) ∈ E is non-manifold if it is shared
by more or less than two faces. For example, if the edge ej belongs to faces
f1, f2, f3, then:

|Incident faces on ej| > 2

This condition causes issues in algorithms that rely on the assumption that
each edge belongs to exactly two faces, such as certain mesh refinement or
simplification algorithms.

Topology of Non-Manifold Meshes

The topology of a non-manifold mesh can no longer be described using the basic
Euler characteristic formula χ = V −E+F , since this formula assumes a 2-manifold
structure. For non-manifold meshes, we can use a modified Euler characteristic
that incorporates additional terms for non-manifold vertices, edges, and higher-
order elements.

Let χnm be the modified Euler characteristic for a non-manifold mesh. This
can be expressed as:

χnm = χ+Nnmv +Nnme +Nnmf

where:

• χ is the standard Euler characteristic for a 2-manifold mesh.

• Nnmv is the number of non-manifold vertices.

• Nnme is the number of non-manifold edges.

• Nnmf is the number of non-manifold faces, i.e., faces that cannot be defined
by two-manifold geometry.

Thus, for a non-manifold mesh, the Euler characteristic is adjusted to account
for topological irregularities.
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Geometric Properties of Non-Manifold Meshes

Non-manifold meshes introduce challenges in calculating geometric properties such
as normals, curvature, surface area, and volume:

• Normals: In non-manifold regions, particularly at non-manifold vertices and
edges, there may be multiple or undefined surface normals. For example, if
an edge is shared by three faces, each face may have a different normal, and
it is unclear how to define the normal of the edge itself.

• Curvature: The curvature at non-manifold vertices and edges becomes com-
plex and may be undefined. The Gaussian curvature K at a manifold vertex
vi is typically given by the angular deficit:

K(vi) = 2π −
∑

θf

where
∑

θf is the sum of the angles at vi for each incident face. However, in
non-manifold vertices, the angular deficit becomes ill-defined, as the neigh-
borhood is not homeomorphic to a disk.

• Surface Area and Volume: Surface area calculations on non-manifold meshes
require special care. The total surface area A of the mesh can still be com-
puted by summing the areas of individual faces, but care must be taken at
non-manifold edges where multiple faces meet. Similarly, volume computa-
tions using the divergence theorem or tetrahedral decomposition may fail for
non-manifold meshes due to disconnected regions or undefined face normals.

The area Af of a triangular face f = (vi, vj, vk) in a non-manifold region re-
mains:

Af =
1

2
∥vij × vik∥

However, due to the non-manifold topology, it is necessary to adapt algorithms
for integration over surfaces to handle irregular connectivity at non-manifold edges
and vertices.

Non-Manifold Mesh Processing

Handling non-manifold meshes requires specialized algorithms. Standard manifold
mesh operations, such as simplification, subdivision, or smoothing, may fail or
produce incorrect results on non-manifold geometry. Approaches to processing
non-manifold meshes include:
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• Re-meshing: Convert the non-manifold mesh to a manifold representation
by duplicating vertices or edges to separate disconnected regions.

• Topology-aware algorithms: Algorithms that explicitly handle non-manifold
topology by accounting for multiple incident faces on edges or disconnected
vertex neighborhoods.

In conclusion, non-manifold meshes pose significant challenges due to their
complex topology and geometry. Handling such structures requires careful consid-
eration of connectivity and modified algorithms for geometric processing.

3.2.5 Textured Meshes

A textured mesh is a 3D mesh that incorporates surface detail by mapping a 2D
texture onto its geometry. The 2D texture is typically an image, and each face or
vertex of the 3D mesh is associated with texture coordinates that define how the
texture is applied to the surface. Formally, a textured mesh T can be defined as:

T = (M,C,T,UV)

where:

• M = (V,E, F ) is the underlying 3D mesh, composed of vertices V , edges E,
and faces F .

• T = {t1, t2, . . . , tk} is the set of textures, where each ti is represented as a
tensor of size RH×W×C :

ti ∈ RH×W×C

where H is the height, W is the width, and C is the number of color channels
(e.g., C = 3 for RGB or C = 4 for RGBA).

• UV is the set of texture coordinates defined as:

UV = {(uj, vj) | j = 1, 2, . . . ,m}

where (uj, vj) ∈ [0, 1] × [0, 1] maps each vertex or face of the 3D mesh to
corresponding points in the 2D texture space.

Texture Mapping and UV Coordinates

In a textured mesh, each vertex of the 3D mesh is assigned a corresponding point
in the 2D texture space, referred to as texture coordinates or UV coordinates.
This process, known as UV mapping, defines how the 2D texture is applied to the
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3D surface by mapping the geometry of the mesh onto the texture image. Each
vertex vi ∈ V is assigned a 2D coordinate (ui, vi), where ui, vi ∈ [0, 1] represent
normalized positions within the texture image.

For a triangular face f = (vi, vj, vk), the texture coordinates are represented
as:

UVf = ((ui, vi), (uj, vj), (uk, vk))

These UV coordinates dictate how the texture wraps over the surface of the
3D object, and they are used to sample color information from the texture image
during rendering. To apply the texture accurately, the coordinates for any point
p on a triangular face f need to be calculated based on the texture coordinates of
the face’s vertices.

For any point p on the surface of the triangle, its texture coordinates (up, vp) are
found by interpolating between the texture coordinates of the triangle’s vertices
using barycentric coordinates. If the barycentric coordinates of p relative to the
vertices vi, vj, vk are λ1, λ2, λ3, the texture coordinates for p can be computed as:

(up, vp) = λ1(ui, vi) + λ2(uj, vj) + λ3(uk, vk)

In practice, the color value at (up, vp) is typically obtained from the texture
image using bilinear interpolation. This technique computes the color at (up, vp) by
taking a weighted average of the four nearest pixels in the texture image, resulting
in smooth transitions between texture pixels.

The process of UV unwrapping is essential for defining an appropriate mapping
from the 3D surface to the 2D texture space. UV unwrapping involves flattening
the 3D geometry into a 2D representation while minimizing distortions such as
stretching or compression, especially in regions with high curvature. The texture
mapping function T should aim to minimize distortion by optimizing for area and
angular preservation in the UV space.
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Chapter 4

Methodology

In this section, we present our proposed methodology for addressing the semantic
segmentation of non-manifold meshes. Section 4.1 provides an overview of the
general structure of the architecture of the proposed model. In Section 4.2,provides
a detailed account of the clustering mechanism and the generation of local patches.
Section 4.3 we describe the process of feature extraction and the propagation of
input features through the model. Section 4.4 offers an in-depth explanation of
the model’s local and global components. Section 4.5 presents the classification
head. Lastly, Section 4.6 outlines the training procedure employed.

4.1 Overview
The input of our method consists of a textured 3D triangulated mesh M =
(V ,F , T , I), where V = {vi | vi ∈ R3} is the set of vertices, each correspond-
ing to a point in 3D space, and F = {fi | fi = (va,i, vb,i, vc,i), va,i, vb,i, vc,i ∈ V }
denotes the set of triangular faces, where each face fi is defined by three vertices
va,i, vb,i, vc,i. The texture is contained in a texture image I ∈ RH×W×3, and the
faces are linked to their texture by texture coordinates, defined as a set of triplets
T = {[(xa,i, ya,i), (xb,i, yb,i), (xc,i, yc,i)]∀fi ∈ F}; each triplet contains the coordi-
nates of the vertices of the corresponding face in the texture image I, and the
pixels inside the triangle given by these coordinates represent the texture of the
face.

The primary objective of our model is to perform semantic segmentation, i.e.
to assign each face of the mesh to one of a set of predefined classes. The model
output is represented as Ŷ ∈ R|F |×NC , where |F | is the number of faces and NC is
the number of predefined classes; Ŷ thus contains a vector of class scores for every
face of the mesh, and the class label is defined as the class having the maximum
score.
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Figure 4.1: General architecture of our model. The feature extraction branch
extracts a feature vector for every face, considering textural and geometrical infor-
mation. K-means is used to generate clusters of faces. The face feature vectors are
structured according to the clusters, and then they are passed on to a series of L-G
transformer blocks. The output of the final block is processed by a classification
head to yield class predictions. Numbers in brackets indicate the dimensionality
of the tensors passed on to the subsequent blocks.

For 3D mesh data, each entity—such as a face or vertex—lacks any inherent,
pre-defined features. This limitation necessitates the precomputation of specific
features for each entity of interest. generally, any arbitrary 3D mesh is limited
to geometric attributes, as detailed in Section 4.3.1. For instance, geometric at-
tributes—such as face normals, curvatures, and angles—can be computed for indi-
vidual faces. However, this preprocessing step can be computationally expensive.
Therefore, to streamline efficiency, we prioritize a minimal yet effective feature
representation per face.

Beyond geometric attributes, textured meshes offer an additional source of
information: textural features. These can be particularly advantageous in cases
where geometric data alone may be insufficient to distinguish between classes,
such as low vegetation and bare soil, where textural cues are critical for accurate
classification. We represent textural information as a set of pixel-based features,
as outlined in 4.3, which provides complementary data to geometric features.
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When combining geometric and textural features, their simple concatenation
can lead to imbalanced feature representations, where one feature type dominates
the other. To address this, we propose a dedicated feature extraction branch
4.3 that integrates both geometric and textural features in a balanced manner,
ensuring each contributes effectively to the final representation of each face. This
approach enables a more nuanced and robust representation, accommodating both
sources of information and enhancing the overall expressiveness of the mesh data
for downstream tasks.

As previously mentioned, we rely on Transformer networks to process 3D mesh
faces due to their inherent order-invariant nature, allowing us to bypass concerns
about the topological relationships that constrain traditional manifold-based mesh
structures. Unlike other architectures that are sensitive to the ordering and connec-
tivity of data points, Transformers offer the flexibility to operate on unstructured
data without such restrictions. However, the quadratic complexity O(N2) of the
standard Transformer architecture, driven by the pairwise attention between all
faces, poses significant computational challenges when applied to large 3D meshes,
making full attention impractical.

To mitigate this issue, we propose a hierarchical approach that first learns fea-
tures within local patches of the mesh. Given the irregular, non-grid-based struc-
ture of mesh data, generating these local patches is not straightforward. Instead
of adhering to a fixed patch size or structure, we leverage the Transformer’s ability
to process sequences of varying lengths. This flexibility allows us to dynamically
create patches of varying sizes using a clustering algorithm—specifically, k-means
clustering in our case as describe in detail in 4.2.

Once the local patches are formed, the Transformer is applied to each patch
independently terms as local block, learning representations within these localized
regions. This process is conceptually similar to the convolution operation in CNNs,
which captures local context, but with the added advantage that Transformers,
through shared weights, apply the self-attention mechanism across patches with-
out being constrained by the local neighborhood structure. This enables the model
to effectively capture low-frequency features and local context within each patch,
while maintaining the flexibility and capability of Transformer-based representa-
tion learning.

Learning local context is crucial, especially for semantic segmentation tasks
on mesh faces, where detailed understanding of short-range interactions between
neighboring faces is essential. However, grasping global context is equally impor-
tant to capture broader structural relationships. To achieve this, we introduce a
learnable global token that is concatenated with the tokens of each cluster, effec-
tively summarizing the features of an entire cluster. This token is then utilized
within a global transformer block to facilitate cross-cluster interactions.
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The combination of these two components—the local transformer block for
intra-cluster interactions and the global transformer block for inter-cluster atten-
tion—is termed the L-G block, as detailed in Section 4.4. This sequential integra-
tion of local and global attention enables a comprehensive understanding of both
fine-grained and global patterns, enhancing the segmentation capabilities of the
model.

4.2 Clustering
In transformer networks, the input is required to be in the form of a sequence
of tokens. When the data consists of a 3D mesh and the objective is to assign
labels to each face, treating all faces as input tokens becomes impractical. This
limitation arises due to the quadratic complexity of the attention mechanism in
transformers, which scales as O(n2), where n represents the number of tokens (or
faces, in this case). As the number of faces increases, the computational cost grows
prohibitively, making such an approach inefficient for large meshes. Therefore,
strategies to reduce token complexity or sparsify the attention mechanism are
essential to ensure tractable computation.

To adapt transformers for data modalities other than language, various ap-
proaches have been proposed. A well-known method to address the complexity of
attention is the Vision Transformer (ViT) (Dosovitskiy et al., 2020), which first
splits an image into small patches, where each patch serves as a token. However,
this approach is not directly applicable to the domain of 3D meshes due to two
main reasons.

First, the data structure of a 3D mesh is irregular and not grid-based, making
it impossible to create regular and fixed patches of faces. Second, local features
are crucial for representation learning, and simply dividing the mesh into patches
of arbitrary sizes can overlook important local feature aggregation.

To address these two challenges, as illustrated in Figure 4.2, local patches of
faces are first generated using k-means clustering. Let V represent the set of
vertices of the input mesh G = (V,E, F ), where E denotes the set of edges and F
the set of faces. The vertices V are partitioned into k clusters, C1, C2, . . . , Ck, using
the k-means algorithm based on their spatial proximity. Each cluster corresponds
to a local region of the mesh. Mathematically, the objective of k-means is to
minimize the sum of squared distances between each vertex vi ∈ V and the centroid
of the cluster it belongs to, given by:

min
k∑

i=1

∑
v∈Ci

∥v − µi∥2
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where µi is the centroid of cluster Ci. These clusters define the local patches,
which preserve the local geometry and features of the mesh.

Figure 4.2: Clustering results of the 3D mesh faces. Each color represents a distinct
cluster, which serves as a local patch for input into the model.

Once clusters are formed based on the 3D positions of the vertices, we proceed
to group the faces into corresponding clusters. Specifically, a face is assigned to
the cluster to which the majority of its vertices belong. For a face f with vertices
v1, v2, v3, if all vertices share the same cluster Ci, the face is trivially assigned to
Ci.

In the case of border faces, where the vertices belong to different clusters, we
apply a majority voting scheme. The face is assigned to the cluster containing the
majority of its vertices. Formally, if a face has two vertices v1, v2 ∈ Ci and the
third vertex v3 ∈ Cj where i ̸= j, the face is assigned to Ci due to the majority of
vertices being in Ci.

However, in the edge case where each vertex of the face belongs to a different
cluster (i.e., v1 ∈ Ci, v2 ∈ Cj, v3 ∈ Ck where i ̸= j ̸= k), the face is randomly
assigned to one of the three clusters.

This process ensures that each face is consistently assigned to a cluster based
on its vertex composition, resolving ambiguities in cases of vertex-sharing between
clusters.

Once all the faces are assigned to clusters, the input mesh G can be represented
as [C, S, Ffeat], where C denotes the number of clusters (a hyperparameter), S
represents the number of faces in each cluster, which may vary across clusters, and
Ffeat is the feature vector associated with each face. This representation serves as
the input to the model.

After that, each face is assigned to the cluster The resulting representation of
the mesh faces is given by

F =
K⋃
k=1

Ck,
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where Ck = {fk1, fk2, . . . , fkNk
}, fkj is the jth face in cluster Ck and Nk is the

number of faces in that cluster.

4.3 Feature extraction
Textured meshes contain two types of information: (1) textural information and
(2) geometrical information. Thus, the feature extraction branch comprises two
distinct sub-branches: the first sub-branch is dedicated to extracting geometrical
features Fgeom, which are derived from hand-crafted features designed to capture
the intrinsic structure of the mesh geometry. The second sub-branch focuses on
extracting textural features Ftex, which capture detailed surface characteristics.

The outputs of these sub-branches are concatenated along the feature dimen-
sion to form a combined feature vector, represented as [Ftex, Fgeom]. This con-
catenated vector is then passed through a multi-layer perceptron (MLP), refining
and transforming it into the final feature representation FFet ∈ RFet for each face
in the mesh. The geometric and texture branches are discussed in Sections 4.3.1
and 4.3.2, respectively.

4.3.1 geometric branch

This branch is specifically designed to capture the geometrical properties of each
face in the mesh. We begin by defining a set of seven handcrafted features for
each face, which include the face’s area, its normal vector, and the angles formed
between the face and its neighboring faces. These features constitute the vector
F hc

geom ∈ R7.
In addition, the raw 3D coordinates of the vertices, normalized relative to the

center of each cluster and represented as a nine-dimensional vector, are concate-
nated with the handcrafted geometric features. This results in a 16-dimensional
feature vector, F raw

geom ∈ R16. The inclusion of these vertex coordinates is crucial, as
it introduces positional information that serves as an inductive bias in the attention
mechanism, enhancing the network’s ability to capture spatial context. Further-
more, these coordinates may assist in extracting high-level geometric features that
go beyond the initial handcrafted descriptors.

The combined feature vector is then processed by a MLP, yielding the final
geometric feature vector Fgeom ∈ Rfix with a fixed dimensionality fix.

4.3.2 Textural branch

The textural information in our dataset consists of RGB values derived from cor-
responding images, as discussed in detail in Section 3.2.5. For each face, three
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UV coordinates indicate the image coordinates of the face’s vertices. While these
coordinates provide direct RGB values for three pixels, they do not fully capture
the color representation of the entire face, as there may be additional pixel regions
between the three vertex pixels. To extract all RGB values associated with each
face, we first generate a grid of candidate pixels based on the initial vertex pixels.
We then calculate the barycentric coordinates of each pixel to determine whether
it lies inside or outside the triangle. The pixel values corresponding to each face

Figure 4.3: Architecture for Textural Feature Extraction. Each triangular face
of the mesh is represented by a corresponding set of pixels shown in red that
undergo processing through a transformer block. This operation distills the pixel
information into a single token, which is subsequently integrated into the main
model.

are represented as [P,C], where P is the number of pixels and C is the number
of channels. Since P can vary for different faces, it is necessary to standardize
the dimensionality of textural information across all faces. Two approaches are
considered for this: the first is a straightforward method that relies on the statisti-
cal properties of the pixel values, specifically the mean and standard deviation of
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each channel. The second approach show in figure 4.3 involves using a transformer
network to summarize the pixel information into a single token. However, due to
hardware limitations, training the transformer network was not feasible, and we
rely on the statistical approach.

The resulting feature vector for each face is a six-dimensional vector F raw
tex ∈

R6. This vector is subsequently passed through a multi-layer perceptron (MLP),
producing a final texture feature vector Ftex ∈ Rfix with the same dimensionality
as the output from the geometrical feature branch.

While these handcrafted features provide a basis for representing texture, they
may be limited in capturing the full complexity and richness of the texture infor-
mation inherent in each face. In future work, we plan to employ transformers to
extract texture features directly, leveraging their capacity for detailed and high-
dimensional feature extraction.

4.4 L-G transformer branch
The input to the L-G transformer branch is represented as

X =
{
CF

k = {FFet,k1, FFet,k2, . . . , FFet,kNk
}
}K
k=1

,

where CF
k is a tensor containing the feature vectors of all faces in cluster Ck within

the K clusters, and FFet,ki denotes the feature vector associated with face fki in
that cluster.

Although transformers are theoretically capable of handling sequences of ar-
bitrary lengths, practical implementation requires uniform dimensions across a
batch. To address this, we pad each cluster’s input to match the length of the
longest sequence of faces. A binary attention mask is employed to prevent interac-
tions between padded tokens and face tokens, assigning a value of 1 to face tokens
and 0 to padded tokens.

An attention mask is a binary matrix that indicates which tokens should par-
ticipate in the attention mechanism. In this case, it prevents the model from
attending to padded tokens by assigning a mask value of zero to them and one
to the valid face tokens. This ensures that attention is computed only between
meaningful face tokens, ignoring the padded elements, allowing the transformer to
focus on relevant data.

Consequently, the input can be represented as a tensor X ∈ RK×Sc×Fet, where
Sc is the maximum number of faces in any cluster.

This input X is then passed through an embedding block, which uses a MLP
to transform each token from the dimension Fet to an embedding dimension emb,
resulting in a tensor E ∈ RK×Sc×emb.
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Figure 4.4: The L-G transformer block is comprised of two distinct components.
The local transformer block focuses on learning fine-grained details within face
clusters, generating two sets of sequences: cluster tokens (depicted in pink) and
face tokens (depicted in red). Subsequently, the global transformer block pro-
cesses these sequences through cross-attention mechanisms to effectively capture
the global context.

The tensor E is subsequently processed through a sequence of L-G transformer
blocks; the total number of blocks, which is a hyperparameter, is set to six in our
experiments. Each L-G block is specifically designed to extract both local and
global contextual information from the input mesh. This is achieved through a
dual structure comprising a local transformer sub-block and a global transformer
sub-block, each optimized for its respective function, as detailed in Sections 4.4.1
and 4.4.2.

An L-G block is defined as a pairing of one local and one global sub-block. The
architecture of an L-G block is illustrated in Figure 4.4.

4.4.1 Local block

The local transformer block enables the model to capture fine-grained features
within each cluster. By leveraging MHSA, the block focuses on key interactions
between vertices or faces within the cluster, which is especially critical for non-
manifold meshes, where accurate segmentation relies heavily on local feature ag-
gregation. Additionally, the local block serves a secondary role by effectively sum-
marizing local geometric and textural features into a cluster token. This token is
later used by global transformer blocks.

Inspired by (Devlin et al., 2019), a single learnable cluster token is concatenated
with the face tokens in each cluster. This modifies the input tensor from E ∈
RK×Sc×emb to Econt ∈ RK×(Sc+1)×emb. The local transformer block thus learns
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high-level features within the faces of a cluster while summarizing them into this
dedicated cluster token, which will subsequently be utilized in the global block for
long-range feature aggregation.

Each local transformer block follows the standard transformer architecture de-
scribed in Section 3.1.6, utilizing shared learnable parameters to project the input
features into key, query, and value representations for each cluster. Multi-head
self-attention (MHSA) is then applied, where the attention mechanism operates
within the same cluster, using the projected keys, queries, and values to compute
attention weights. This captures intra-cluster dependencies, allowing the model
to focus on local features. The output is subsequently passed through layer nor-
malization and a feed-forward neural network with residual connections, ensuring
stability and enhanced gradient flow. We can express the output of the local block
as having the same dimensions as its input, X ∈ RB×C×(Sc+1)×emb. The output of
this block represents higher-level features learned through local feature aggregation
within clusters.

The output from this block undergoes layer normalization and is passed through
a MLP composed of two fully connected layers with ReLU activations, integrated
with residual connections.

The resulting output of the local block retains the input shape as Zlocal ∈
RK×(Sc+1)×emb, representing enriched latent local features.

4.4.2 Global block

In contrast to the local block, the global block serves a complementary function
within the L-G architecture. While the local block is dedicated to aggregating and
learning fine-grained features from localized clusters, capturing the global context
of the input mesh is important. The global block enables the model to account
for long-range dependencies and interactions across the entire mesh, potentially
enriching the representations learned from local features. By incorporating global
context, the model can identify patterns that span broader spatial regions, which
is crucial for tasks requiring an understanding of both local details and global
structures.

To begin, the output Zlocal from the Local Block is split into two components: a
set of cluster tokens Zclusters ∈ RK×emb and a set of face tokens Zfaces ∈ R(K·Sc)×emb

(see Fig. ??). In the Global Block, cross-attention is applied, allowing the model
to compute attention between cluster tokens and face tokens, thus capturing inter-
cluster dependencies.

Within the cross-attention block, the sequence Zclusters of cluster tokens is used
to generate the key and value matrices, while the sequence Zfaces of face tokens
provides the queries. Similar to the Local Block, the Global Block follows the
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original transformer architecture (Vaswani, 2017), but with cross-attention rather
than self-attention. This results in a tensor Zo

global ∈ R(K·Sc)×emb.
The tensor Zo

global is then reshaped back to the original cluster-based structure,
which is possible since the association of faces with clusters is known. This yields
an output tensor Zglobal ∈ RK×Sc×emb, which serves as the input to the subsequent
block.

Each global transformer block is structured similarly to the local block re-
garding its components. However, instead of self-attention, it utilizes multi-head
cross-attention, enabling the attention mechanism to function between the cluster
tokens and the mesh faces. Following this, the output is processed through layer
normalization and a feed-forward neural network with residual connections.

The output of the global block will match the size of the queries, as it is
calculated based on the cross-attention mechanism. Consequently, the output
from the global block will be X ∈ RB×

∑C
i=1 Si×emb.

To analyze how the global block reduces complexity while learning the global
context, let us assume the total number of faces in the 3D mesh is F , calculating
all interactions between faces using a traditional attention mechanism would have
a complexity of O(F 2). However, by utilizing cluster tokens and faces, this com-
plexity is reduced to O(F × C), where C is the number of clusters—significantly
smaller than the number of faces. This reduction makes it feasible to capture
interactions between clusters and learn the global context of the mesh efficiently.

4.5 Classification
The output Zglobal from the final L-G transformer block undergoes further process-
ing in a dedicated classification head to generate class predictions for each face in
the mesh. This classification head is composed of a MLP that projects each face’s
feature vector into a space of raw class scores of dimension NC , where NC denotes
the number of possible classes.

These raw class scores are subsequently normalized using the softmax function
to produce probabilistic class scores for each face. This normalization results in a
tensor of shape K×Sc×NC , where each entry represents the probability distribu-
tion over classes for a face within a cluster. This tensor encodes class probabilities
across clusters, enabling direct interpretability of each face’s likelihood to belong
to specific classes.

Following this step, padding tokens, introduced to ensure uniform sequence
length across clusters, are removed based on the attention mask. This removal
restores the tensor to its original, cluster-based structure, ensuring that only valid
face tokens are retained. The final, fully processed output is represented as Ŷ,
which aligns with the initial input mesh structure as outlined in Section 4.1.
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4.6 Network Training
Training is based on the categorical cross-entropy loss Lce to measure the diver-
gence between the predicted probabilities for each class associated with individual
faces and their corresponding true labels. It aggregates the loss across all faces in
the mesh and all classes:

Lce =

|F |∑
i=1

NC∑
c=1

yic · log(ŷic), (4.1)

where |F | represents the total number of faces in the mesh, NC denotes the total
number of classes, yic is the ground truth binary indicator face i to belong to class
c (yic = 1 ) or not (yic = 0), and ŷic is the predicted probability for the face i to
belong to class c.
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Chapter 5

Experiment

5.1 Dataset
To evaluate and validate our proposed model, we utilized the Hessigheim 3D (H3D)
dataset Kölle et al. (2021), which includes both high-resolution point clouds and
non-manifold textured 3D meshes. Our study focuses solely on the mesh modality
(H3D-Mesh). The dataset consists of three subsets: training, validation, and test.
However, since the test set is not yet publicly available or published, we rely on the
validation set for model validation and examination. Therefore, the training and
validation sets, comprising 9,236,637 mesh faces for training and 2,577,554 faces
for validation, covering surface areas of 36,445 m² and 8,050 m² respectively, are
used in this thesis. The dataset includes 11 finely labeled semantic classes: Low
Vegetation, Impervious Surface, Vehicle, Urban Furniture, Roof, Façade, Shrub,
Tree, Soil/Gravel, Vertical Surface, and Chimney. These labels are transferred
from the point cloud to the mesh using a geometry-driven approach. However, ap-
proximately 40% of the mesh faces remain unlabeled, primarily in regions where
the mesh exceeds the annotated point cloud area. The high-resolution mesh, with
its detailed surface representation and texture information, is particularly suited
for fine-grained semantic segmentation, making it ideal for benchmarking and val-
idating.

5.2 Evaluation metrics
In the context of classification, the performance of a model is often evaluated using
four fundamental components: True Positives (TP), False Positives (FP), False
Negatives (FN), and True Negatives (TN). These components are derived from
comparing the predicted class labels to the actual ground truth.
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• True Positives (TP): These are instances where the model correctly pre-
dicts the positive class. In other words, the model classifies an instance as
positive, and it is indeed positive according to the ground truth.

• False Positives (FP): These are instances where the model incorrectly pre-
dicts the positive class. This happens when the model classifies an instance
as positive, but it is actually negative. False positives are also referred to as
Type I errors.

• False Negatives (FN): These are instances where the model incorrectly
predicts the negative class. In this case, the model classifies an instance as
negative, but it is actually positive according to the ground truth. False
negatives are also known as Type II errors.

• True Negatives (TN): These are instances where the model correctly pre-
dicts the negative class. The model classifies an instance as negative, and it
is indeed negative according to the ground truth.

These four components form the foundation for various performance metrics
that evaluate the quality of a classification model.

5.2.1 Confusion Matrix

A Confusion Matrix is a tabular representation used to summarize the performance
of a classification algorithm. It provides insight into the distribution of predicted
and actual class labels, helping to identify not only the correct classifications but
also the types of errors made by the model. For a binary classification problem,
the confusion matrix is structured as follows:[

TP FP
FN TN

]
The rows of the confusion matrix represent the actual class labels (positive or

negative), while the columns represent the predicted class labels. This matrix is
an essential tool for visualizing the performance of a classification model, allowing
us to calculate performance metrics such as Precision, Recall, Accuracy, and the
F1 Score.

For multi-class classification problems, the confusion matrix is extended to a
CLs×CLs matrix, where CLs represents the number of classes. Each cell in this
matrix represents the number of instances where the true class label is i, and the
predicted class label is j, allowing us to compute evaluation metrics for each class.
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5.2.2 Mean F1 Score

The mean F1 score is a key metric for evaluating the performance of a classifier,
particularly in cases of imbalanced datasets where certain classes may dominate.
It is the harmonic mean of precision and recall for each class. For a specific class
i, the F1 score is computed as follows:

F1i = 2× Precisioni × Recalli
Precisioni + Recalli

where:

• Precisioni is the ratio of correctly predicted instances of class i to the total
number of instances predicted as class i. This can be expressed as:

Precisioni =
TPi

TPi + FPi

where TPi is the number of true positives for class i, and FPi is the number
of false positives for class i.

• Recalli is the ratio of correctly predicted instances of class i to the total
number of actual instances of class i. This is given by:

Recalli =
TPi

TPi + FNi

where FNi is the number of false negatives for class i.

Thus, the F1 score for class i balances precision and recall as a harmonic mean,
ensuring that both false positives and false negatives are equally accounted for.

To calculate the mean F1 score across all classes, we average the F1 scores of
each class. Given CLs classes, the mean F1 score is calculated as:

Mean F1 =
1

CLs

CLs∑
i=1

F1i

This average provides an overall evaluation of the classifier’s ability to balance
precision and recall across multiple classes, which is particularly useful in datasets
with uneven class distributions.

5.2.3 Overall Accuracy

overall accuracy is one of the simplest and most widely used performance metrics.
It measures the proportion of correctly classified instances among all instances
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in the dataset. Formally, if the total number of samples is N , and the number
of correctly predicted samples is

∑
True Positivesi, then the overall accuracy is

defined as:

Accuracy =

∑CLs
i=1 True Positivesi

N

This metric provides a general measure of the classifier’s performance across
all classes. However, in the presence of imbalanced classes, overall accuracy can
be misleading. In such cases, models may achieve high accuracy by predominantly
predicting the majority class correctly while performing poorly on minority classes.

For a balanced understanding of model performance, both the mean F1 score
and overall accuracy should be reported together. The mean F1 score provides
insight into how well the model balances precision and recall across all classes,
while overall accuracy gives a broad overview of the model’s correctness.

5.3 Experimental Setup
The Experimental setup we utilized includes the general network hyperparameters,
trinaing setup , augmentation strategies and dropout.

The network’s hyperparameters are tuned based on the results from the
validation set. The number of L-G blocks is set to 6, with an embedding dimension
of 256, and 300 clusters are used for the k-means clustering. The deep learning
model is implemented using the PyTorch library Paszke et al. (2017).

Network Training The training process follows the approach outlined in ??.
The model’s initial parameters are randomly initialized based on the method in
Glorot and Bengio (2010), and the optimization is carried out using the SGD
optimization method. The Adam optimizer Kingma and Ba (2014) is chosen with
an initial learning rate of 0.0001, and a scheduler is applied with a step size of
1000 and a gamma value of 0.9. Each experiment is run for 100 epochs, and all
training is performed on an NVIDIA A100 80GB GPU.

Dropout and Augmentation Settings To mitigate overfitting, we implement
both dropout and tailored data augmentation strategies throughout training.

A dropout (Srivastava et al., 2014) rate of 0.1 is applied, where 10% of neurons
are randomly deactivated during each forward pass. This stochastic removal of
units prevents over-reliance on specific neurons, driving the network to capture
more generalized and robust feature representations.
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For data augmentation, we employaugmentation optimized for 3D mesh data,
consisting of:

• Rotation Range (45 degrees): Meshes are randomly rotated by up to
±45◦ across all three axis, simulating diverse viewing angles and enhancing
the model’s ability to generalize across various object orientations.

• Scale Range (2): Random scaling between 0.5 and 2 ensures robustness to
size variations, allowing the model to handle meshes with differing dimen-
sions.

• Noise Standard Deviation (0.01): Gaussian noise with a standard devi-
ation of 0.01 is added to vertex positions, simulating real-world sensor noise
and ensuring resilience against minor geometric perturbations.

Together, dropout and augmentation enhance the model’s ability to generalize
to unseen data by introducing regularization and diversity during training.

5.4 prior methodology
We conducted a comprehensive series of experiments to rigorously evaluate our
model and explore the efficacy of various configurations. However, it is impor-
tant to note that the dataset’s training and validation sets are publicly accessi-
ble, which restricts our ability to compare our model with other frameworks due
to the unavailability of the test set. To facilitate a comparative analysis of our
model’s performance against existing methodologies, we aimed to train a model
that achieves the highest results on the announced leaderboard for the dataset and
subsequently evaluated it on the validation set as a baseline for comparison with
our results.

Based on the announced results Kölle et al. (2021), the Random Forest classifier
achieved the highest performance in terms of the mean F1 score. Therefore, in
our initial experiment, we trained the Random Forest classifier using a specific
combination of geometrical and textural features. For the geometrical features,
we employed face normal vectors, face surface areas, and anglesand 3D vertex
coordinate. For the textural information, we utilized pixel value statistics per
channel, resulting in a 22-dimensional feature vector, as shown in the table5.3.
Although the features utilized differ from those employed in Kölle et al. (2021),
which included a broader array of inputs, we selected these particular features as
they are also integral to our proposed model. This decision was made to facilitate
a fair comparison, emphasizing our objective of assessing the model’s capabilities
with the same input. It can be inferred that incorporating additional descriptive
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data would likely improve the model’s performance. We used a RF with 100 trees
and a maximum depth of 20. Nodes receiving fewer than 10 samples were not split
further in the training process, and the Gini index was used to select the optimal
separating surface in each node in the training procedure.

5.5 Model variant
In our analysis, we focused on three critical aspects: architectural design, input
feature selection, and model parameter tuning. By systematically investigating
these configurations, we aimed to optimize our model’s performance and enhance
our understanding of its capabilities based on the available training and validation
datasets.

Name Model Features
NMF-L1 NMF-L F hc

geom ∈ R7

NMF-L2 NMF-L F raw
geom ∈ R16

NMF-L3 NMF-L [F raw
geom, F

raw
tex ] ∈ R22

NMF-L4 NMF-L FEX(F raw
geom, F

raw
tex )

NMF-LG1 NMF-L+G F hc
geom ∈ R7

NMF-LG2 NMF-L+G F raw
geom ∈ R16

NMF-LG3 NMF-L+G [F raw
geom, F

raw
tex ] ∈ R22

NMF-LG4 NMF-L+G FEX(F raw
geom, F

raw
tex )

RF RF [F raw
geom, F

raw
tex ] ∈ R22

Table 5.1: Overview of the experiments conducted. Name: the name by which
an experiment is referred to in the text. Model: the model used (NMF-L: NoMe-
Former with local blocks only, NMF-L+G: NoMeFormer with local and global
blocks; RF: Random Forest. Features: features used as input. FEX(·) indicates
the use of the feature extraction branch to generate a feature vector for each face.

In our experimental setup, we designed two main groups of experiments to
evaluate the performance of NoMeFormer under varying architectural configura-
tions. The first group includes experiments where only the six local attention
blocks are activated within the Local-Global (L-G) Transformer branch. These
experiments, denoted as NMF-L in Table 5.1, restrict attention to local clusters,
enabling us to examine the effectiveness of local feature aggregation in isolation.
In the second group, both local and global attention blocks are employed, denoted
as NMF-LG in Table 5.1. The inclusion of global attention allows information ex-
change across clusters, providing an assessment of the added value of cross-cluster
communication and the influence of global context on model performance. Each

51



group consists of four experimental variations, distinguished by how the feature
vectors for the mesh faces are defined.

For the first experiment in each group, labeled NMF-L1 and NMF-LG1, the
model is provided only with a set of seven hand-crafted geometric features, F hc

geom ∈
R7, representing fundamental shape information. These features are then passed
through a MLP), which maps them to a higher-dimensional feature space FFet wih
a dimensionality of Fet = 64, establishing a baseline for feature extraction based
purely on geometric descriptors.

In the second variant, NMF-L2 and NMF-LG2, we extend the geometric repre-
sentation by incorporating the nine vertex coordinates of each face into the feature
set, enhancing spatial information. This leads to a raw feature vector, F raw

geom ∈ R16,
which is also processed by an MLP to achieve a consistent feature dimensionality of
Fet = 64. This raw 3D data serves two key purposes: first, as positional encoding,
ddressing the lack of inherent order awareness in the attention mechanism.

Without explicit positional information, the model cannot distinguish between
features originating from different regions of the mesh. This experiment allows us
to explore whether incorporating raw 3D values introduces an inductive bias in
the model, enabling it to capture the importance of input data order and spatial
structure. Moreover, raw 3D data plays a complementary role. While handcrafted
geometrical features are used as part of the input, the inclusion of 3D coordinates
allows the model to learn additional geometrical representations that are not ex-
plicitly captured by handcrafted features. This aligns with the core concept of
representation learning in deep learning, where models typically rely on raw data
without predefined feature engineering.

The third experimental variant, denoted as NMF-L3 and NMF-LG3, enriches
the feature representation further by integrating textural attributes with the ge-
ometric descriptors. Here, we concatenate the raw hand-crafted texture features
F raw
tex ∈ R6, discussed in detail in Section 4.3.2, with the expanded geometric vector

F raw
geom ∈ R16 from the second variant. This combined vector leverages both shape

and radiometric information to produce a more comprehensive feature representa-
tion. The concatenated vector is passed through an MLP, yielding the final feature
vector FFet with a dimensionality of Fet = 64, allowing the model to exploit both
structural and radiometric cues for enhanced context representation.

In the fourth and final variant for each group, denoted as NMF-L4 and NMF-
LG4, we employ the comprehensive feature extraction branch outlined in Sec-
tion 4.3. This branch utilizes all available input data, processing it through a
structured pipeline to yield a refined feature vector with both fix and Fet set
to 64. This experiment serves two purposes: first, to once again evaluate the
effectiveness of textural information as an additional input; and second, through
comparison with Experiment 3, to assess the impact of the feature extraction
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branch, which aims to represent both sets of features equally.
Together, these experiments provide insight into the roles of local versus global

attention mechanisms and the relative contributions of geometric, positional, and
radiometric features in improving mesh segmentation performance.
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Chapter 6

Results and Discussion

This section presents and evaluates the results obtained from our experiments.
Each experiment was repeated three times, and we report the mean and standard
deviation of the mean F1 score, and overall accuracy to assess the robustness of
the results, irrespective of initialization. To ensure a fair comparison, the train-
ing setup for each experiment was held constant as outlined in 5.3, maintaining
consistency across all evaluations.

6.1 Comparison with RF

Name mF1 [%] OA [%]
NMF-LG2 58.9 61.1
RF 31.1 39.3

Table 6.1: Mean F1 score (mF1) and Overall Accuracy (OA) results were obtained
for the RF and the best variant of NoMeFormer Name: name of the experiment
according to Table 5.1

Table 6.1 shows the classification results of the mentioned two models, compar-
ing the baseline RF model with The best NoMeFormer variant, NMF-LG2, which
outperforms the RF by 25.8% in mean F1 score and by 21.8% in OA.

This performance gain is consistent with expectations, as NoMeFormer is trans-
former based architecture, equipped with L-G trans- former blocks, enables effec-
tive feature aggregation across both local and global scales. In contrast, the RF,
limited by its reliance on predefined handcrafted features, lacks the capacity for
representation learning and robust feature aggregation, thereby constraining its
ability to capture the intricate, high-level pat- terns present in the data. NoMe-
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Former’s representation learning framework effectively tackles this complexity by
employing comprehensive feature aggregation.

However, as discussed, the models currently operate with a minimal feature
set, which differs from that used in (Kölle et al., 2021). This inherently favors
deep learning models, such as transformers, due to their robust representation
learning capabilities. Given this setup, it is anticipated that the RF model will
exhibit improved performance as feature complexity increases. Moreover, as in-
creasingly sophisticated features are provided as input to both models, we expect
the performance gap to narrow further.

6.2 Ablation study

Name mF1 [%] OA [%]
NMF-L1 45.9 ±0.2 52.0 ±0.2
NMF-L2 49.2 ±0.5 53.1 ±0.2
NMF-L3 42.7 ±1.0 48.9 ±0.5
NMF-L4 46.8 ±0.6 50.6 ±0.2
NMF-LG1 50.3 ±0.3 53.9 ±0.2
NMF-LG2 58.9 ±0.5 61.1 ±0.2
NMF-LG3 49.5 ±0.9 53.7 ±0.4
NMF-LG4 52.4 ±0.9 56.8 ±0.2

Table 6.2: Mean F1 score (mF1) and Overall Accuracy (OA) results obtained for
the experiments involving different varinat of NoMeFormer models. Name: name
of the experiment according to Table 5.1.

In comparing the experimental results across two configurations—one employ-
ing both local and global blocks in the L-G Transformer (NMF-LG) and another
using only local blocks (NMF-L)—the benefit of integrating global blocks is appar-
ent. Across all four variants with different feature vector definitions, the networks
with combined local-global blocks consistently outperform those with local blocks
alone by a significant margin, with improvements in mF1 ranging from 4.4% to
9.7%. This underscores the importance of incorporating long-range interactions
via global blocks and cluster tokens. By encoding the representation of feature
sets into a single token and propagating it across the remaining faces in the mesh,
the model efficiently captures global context, which directly enhances performance
in the classification task. These findings further confirm the suitability of the L-G
Transformer blocks, as outlined in Section 4.4, for the semantic segmentation of
3D meshes.
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From the perspective of input feature impact, the baseline model, which uses
only seven handcrafted features in the local-only configuration (NMF-L1), achieved
an mF1 of 45.9, this set of feature shows a marked improvement of 9.7% in mF1
when global blocks are introduced (NMF-LG1), specifically for this feature set.

The evaluation of the influence of 3D vertex coordinates, specifically in the
variants (NMF-L2) and (NMF-LG2), on face classification reveals notable enhance-
ments in model performance across both configurations. Specifically, the integra-
tion of the local block yields a classification performance improvement of 3.3%,
while the inclusion of the global block results in a substantial increase of 8.6%,
outperforming all other model variants by a significant margin. These results un-
derscore the efficacy of leveraging positional information to introduce an inductive
bias, enabling the model to better discern the origins of input features. Further
analysis of the class-wise F1 scores for this variant is depicted in Table 6.3. The
classes with a higher number of instances, such as "tree" and "low vegetation,"
achieve the highest F1 scores, while some classes, like "soil" and "underbrush," ex-
hibit lower scores. This is primarily due to their similarity in geometrical features
with the "low vegetation" class.

The results in Table 6.2 show that integrating handcrafted textural features
did not yield the expected results. While it was anticipated that textural features
would improve classification—particularly in cases where geometrical features are
insufficiently descriptive to distinguish between certain classes, such as Soil and
Grass—the inclusion of textural data actually resulted in a reduction of the mF1
score. Specifically, concatenating the hand-crafted geometrical and textural fea-
tures (NMF-LG3) leads to a notable 9.4% drop in mF1 performance compared to
the version trained without textural information, NMF-LG2; the overall accuracy
(OA) is also reduced by 6.4%.

While introducing the feature extraction branch (NMF-LG4) helps mitigate
performance degradation, boosting mF1 by 2.9% and OA by 3.1%. However,
these improvements are still significantly lower than the performance achieved by
the variant NMF-LG2, which excludes textural information (6.5% in mF1, 4.3%
in OA). This reduction can likely be attributed to the method of incorporating
textural information into the model. Specifically, textural data were represented
statistically through means and standard deviations per band, which inadequately
captures the intricate and informative aspects of texture. Consequently, this ap-
proach likely introduces noisy features that poorly correlate with the output vari-
able, hindering the model’s ability to effectively learn the relationships between
relevant texture features and the target variable. This limitation underscores the
need for an improved textural feature extraction branch in future work.

In addition to evaluating performance metrics, we performed a thorough analy-
sis of the most prevalent misclassification errors observed in the models. A notable
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LV IS VE UF RO FA SH TR SO VS CH
LV 188159 45395 232 4884 1320 2374 2855 1265 12983 29 0
IS 47181 159459 305 2928 7381 4839 804 868 2105 1092 0
VE 2001 5578 8822 4559 2408 1891 345 1089 1 273 37
UF 6951 5240 901 29842 6504 8954 5659 21339 198 414 24
RO 13159 7604 178 2023 188854 9974 1031 14905 119 132 495
FA 5977 2415 446 5903 6927 94463 1700 8523 12 1257 37
SH 4945 2180 2119 18047 3716 5823 11460 9161 219 69 1
TR 5619 274 759 7641 11187 9471 2856 267231 41 92 24
SO 27910 7850 1 196 0 250 92 59 2079 0 0
VS 193 1883 4 1102 663 8009 87 2086 0 10256 0
CH 110 0 0 143 1141 3 2 619 0 1 1793

Table 6.4: Confusion Matrix for Classes. Abbreviations: LV = Low Vegetation,
IS = Impervious Surface, VE = Vehicle, UF = Urban Furniture, RO = Roof, FA
= Façade, SH = Shrub, TR = Tree, SO = Soil, VS = Vertical Surface, CH =
Chimney.

challenge arose in distinguishing between geometrically similar classes, such as low-
vegetation soil and shrub areas interspersed with urban furniture. This difficulty
is illustrated in the confusion matrix 6.4 of model predictions, which reveals that
almost all instances of the soil class were misclassified as low vegetation, and a
significant number of shrub class instances were incorrectly identified as urban
furniture. These misclassifications likely stem from two factors: (1) the close sim-
ilarity of geometrical features across these classes and (2) an imbalance in class
representation within the training set. This imbalance biases the model toward
classes with more abundant examples, especially for geometrically similar classes,
leading to overlapping feature representations and, subsequently, higher rates of
misclassification.
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Chapter 7

Conclusion

7.1 Summary
In this thesis, we present NoMeFormer, a transformer-based network specifically
developed to process arbitrary 3D meshes without imposing manifold constraints.
This innovative framework addresses a crucial limitation of many existing deep
learning models that struggle with non-manifold structures. Our approach ef-
ficiently captures fine-grained details, high-frequency patterns, and global con-
text, essential for accurately segmenting complex geometries. A key component of
NoMeFormer is the introduction of the Local-Global (L-G) block, a transformer
architecture that sequentially processes both local and global dependencies. By
leveraging this architecture, we can maintain the intricate relationships within lo-
cal patches while also capturing broader contextual information across the entire
mesh.

Moreover, NoMeFormer leverages a minimal set of input features, creating a
streamlined processing pipeline that boosts efficiency and reduces the need for
sophisticated handcrafted features. This design leads to a Achieving an mF1 score
of 58.9 on the Hessigheim benchmark dataset, where our model demonstrates
capabilities in semantic segmentation tasks. The results underscore the potential
of NoMeFormer to redefine how non-manifold meshes are processed in various
applications, ranging from cultural heritage preservation to autonomous navigation
systems. As the field continues to evolve, our framework paves the way for future
research and advancements in mesh processing, highlighting the importance of
adaptable architectures capable of addressing the complexities of real-world data.
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7.2 Outlook
However, despite these advancements, several limitations remain that warrant fur-
ther investigation. A primary area for future research should focus on the in-
tegration of textural information. While we anticipated that incorporating this
information would be highly beneficial, our findings indicate that it inadvertently
compromises the network’s classification performance. In this work, we relied on
a static representation of textural information, which is the simplest form of in-
tegration. To enhance this aspect, we proposed an additional transformer block
capable of training end-to-end with the rest of the network. This block would
learn to summarize the textural information dynamically, potentially improving
classification outcomes.

Nonetheless, incorporating this additional component into the network sig-
nificantly increases the computational intensity of training. With the current
hardware resources, implementing this solution proved challenging. Addressing
this computational burden is essential for making the integration of textural in-
formation feasible in practical applications. Future work should aim to optimize
this integration strategy, perhaps through more efficient architectures or advanced
training techniques that can handle the increased complexity. By resolving these
issues, we can unlock the full potential of NoMeFormer, enabling it to leverage tex-
tural information effectively while maintaining performance across various tasks
and datasets.

Furthermore, considering the data-intensive nature of transformer models, pre-
training on large and diverse datasets is crucial for allowing the model to develop
more generalizable features. This pretraining phase is essential for equipping the
network with a robust understanding of various mesh structures and characteris-
tics. By exposing the model to a wide range of examples, it can learn to recognize
important patterns and features that might not be present in smaller, task-specific
datasets. This broad exposure can significantly enhance the model’s performance,
especially in real-world applications where data variability is common.

Exploring self-supervised pretraining techniques, as proposed by (He et al.,
2022), offers a promising avenue for improving the model’s ability to adapt to var-
ious mesh configurations. These techniques allow the model to learn from the data
itself without requiring extensive labeled datasets, thus making it feasible to train
on large volumes of unannotated mesh data. By leveraging this approach, NoMe-
Former can better identify significant patterns and relationships within the data,
ultimately leading to improved performance in downstream applications. This is
particularly important in semantic segmentation tasks, where the availability of
task-specific labeled data may be limited. By adopting self-supervised pretraining
strategies, we expect to enhance the model’s generalization capabilities, making it
more effective in diverse scenarios and more resilient to variations in input data.
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