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Abstract

The reconstruction of 3D models from multi-view images is a critical task in various
fields such as autonomous driving and medical imaging. The accuracy and reliability of
these reconstructions are paramount, particularly in those safety-critical real-time appli-
cations. This thesis addresses the challenge by introducing an Evidential Deep Learning
(EDL) approach to Multi-View Stereo (MVS) reconstruction, enhancing the prediction
of depth and associated uncertainty metrics without significantly increasing resource re-
quirements.

Traditional MVS methods have achieved substantial progress by leveraging neural net-
works, yet the explicit prediction of uncertainty remains underexplored. Uncertainty in
deep learning can be categorized into aleatoric uncertainty, which arises from data noise,
and epistemic uncertainty, which stems from model limitations. Existing methods either
overlook epistemic uncertainty or employ resource-intensive techniques to estimate it.

This thesis proposes a novel pipeline that integrates EDL into the MVS framework.
EDL, based on the Dempster-Shafer Theory and probabilistic distributions like Dirich-
let and Normal-inverse-Gamma, provides a robust measure of confidence by interpreting
neural network outputs as parameters of an evidential distribution. This approach not
only predicts depth but also quantifies the associated uncertainty, making it particularly
suitable for applications requiring high trustworthiness.

The developed network, Evidential Multi-view Stereo Network (EMVSNet), incorporates
EDL to produce both depth estimates and uncertainty metrics. Experiments conducted
on standard datasets demonstrate that EMVSNet achieves competitive performance in
depth prediction while providing meaningful uncertainty estimates. These metrics are
crucial for identifying unreliable regions in the depth maps, thus enhancing the overall
reliability of the 3D reconstruction.

The thesis begins with a review of foundational concepts and related work in MVS
and uncertainty in neural networks. This is followed by a detailed presentation of the
EMVSNet architecture and its components. Extensive experiments and results are then
discussed to highlight the effectiveness of the proposed approach in various scenarios.
Finally, the thesis concludes with an outlook on future research directions, emphasizing
the potential of EDL to improve the robustness and applicability of MVS systems in
critical real-world applications.

In summary, this work pioneers the integration of EDL into MVS, providing a compre-
hensive framework for accurate and reliable 3D model reconstruction with uncertainty
awareness. This advancement paves the way for safer and more effective deployment of
depth prediction systems in diverse fields.
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1 Introduction

The reconstruction of 3D models from multi-view images has become one of the most
prominent topics at the CVPR conference [1], reflecting a significant surge in interest
and research within this field. This heightened focus is driven by the vast array of po-
tential applications across various industries. For instance, autonomous vehicles rely on
precise depth maps for navigation and obstacle avoidance, ensuring passenger safety and
efficient route planning. In medical imaging, accurate 3D reconstructions are crucial for
precise diagnosis and effective treatment planning. Given the critical nature of these
applications, the trustworthiness of the results produced by such systems is paramount.
It is often more essential to identify predictions that may be unreliable than merely
achieving high reconstruction performance, especially when these systems are deployed
in real-time applications.

As a foundational step in achieving complete 3D reconstruction from multiple images of
an object, Multi-View Stereo (MVS) refers to the estimation of depth by incorporating
multiple images from different perspectives. Various approaches have been developed to
tackle this task, with recent methods predominantly utilizing neural networks to enhance
performance.

Despite the significant advancements in MVS methods, the prediction of uncertainty re-
mains underexplored. While some studies have addressed the prediction of uncertainty
alongside depth estimation to better manage regions with unreliable data, the epistemic
type of uncertainty is frequently overlooked. In instances where epistemic uncertainty is
considered, the employed techniques are often resource-intensive.

This thesis seeks to enhance this practice by developing a pipeline that predicts depth in
a reference image from MVS, accompanied by relevant uncertainty metrics, while min-
imizing additional resource requirements. Given that State of the Art (SotA) methods
utilize neural networks, this research investigates deep learning approaches to address
the challenges of uncertainty prediction.

The concept of Evidential Deep Learning (EDL), introduced by Sensoy et al. [2] in 2018,
integrates uncertainty estimation into deep neural networks by interpreting the network’s
outputs as parameters of an evidential distribution. This approach captures both the
predictive mean and the associated uncertainty, providing a more robust measure of
confidence in the predictions. Neural networks using this technique can be trained end-
to-end with an adapted loss function and can provide uncertainty estimations during
inference, minimizing additional resource requirements.

To the best of the author’s knowledge, this work introduces EDL into the field of MVS
for the first time, presenting a novel approach with several potential advantages for
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real-time applications. The utilization of EDL offers multiple benefits, which will be
elaborated upon in this thesis:

The reader will be introduce to fundamental image models and the different types of
uncertainty in neural networks in chapter 2. Additionally, the mathematical background
and the overall concept of EDL will be explained. Given the substantial interest and
research efforts dedicated to MVS methods, chapter 3 introduces various established
concepts in this field. This chapter also covers related applications of EDL, other un-
certainty determination concepts, and datasets for MVS. Chapter 4 then presents the
network structure developed in the course of this work, along with suggestions for ad-
justments and extensions. Building on the theoretical background and the network
referred to as Evidential Multi-view Stereo Network (EMVSNet), setup and training
process to conduct various experiments is introduced in chapter 5. Chapter 6 then de-
tails about those experiments designed to measure the network’s prediction performance
and compare the newly introduced concept of EDL to traditional methods of uncertainty
prediction.

In summary, this thesis seeks to significantly advance the field of 3D model reconstruc-
tion from multi-view images by incorporating uncertainty prediction within the MVS
pipeline using EDL. This innovative approach is designed to improve the reliability and
robustness of depth prediction systems, ensuring their effectiveness in critical applica-
tions requiring accurate 3D reconstruction. By providing a framework for accurately
estimating and managing uncertainty, the proposed method aims to pave the way for
safer and more precise implementations in real-world scenarios, thereby enhancing the
overall trustworthiness and performance of these systems.
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2 Basics

This chapter introduces foundational concepts essential for understanding the subse-
quent sections of this thesis. The discussion begins with the camera model in section 2.1,
detailing how a camera captures light information and the mathematical relationship be-
tween the real world and the image sensor. This includes the extrinsic camera matrix for
transforming world coordinates to camera coordinates, and the intrinsic camera matrix
for internal camera parameters, as well as addressing lens distortion. Next, the Plane
Sweep Focus Algorithm is delved into in section 2.2, which is used for depth estimation
by leveraging well-calibrated cameras and known extrinsic parameters, reducing the 2D
search problem in stereo images to a 1D line search problem. The types of uncertain-
ties, namely aleatoric and epistemic, that affect deep neural networks are examined in
section 2.3 Section 2.4 introduces the EDL framework, that incorporates uncertainty
estimation into neural networks. Based on the mathematical concepts discussed before,
this concept should be suitable to enhance prediction accuracy and uncertainty esti-
mation. Finally, section 2.5 presents a fundamental network layout and mathematical
function used inside the network’s structure.

2.1 Camera model

In general, a camera captures the information of light emitted by surfaces in the real
world on its sensor. To describe the relationship between the coordinates of a point in
the real world and the orientation of the camera, points can be described as Pw and Pc

with

P =

2

6
6
4

X
Y
Z
1

3

7
7
5

(2.1)

as homogeneous 3D coordinates in either coordinate system.

Extrinsic camera matrix
The extrinsic camera matrix then describes the transformation from world coordinates
to camera coordinates. The camera coordinate system is located in the projection center.
In most cases, the optical axis Zc from the projection center to the origin of the camera
coordinate system is aligned with the camera principal axis. The extrinsic matrix can
be described by the concatenation of the rotation matrices (2.2-2.4) around each axis [4].
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Figure 2.1: Model of different coordinate systems to describe the relationship between
points in the real world and the pixel on the image sensor. The extrinsic
camera matrix is used for conversion from the World Coordinate System to
the Camera Coordinate System. The intrinsic camera matrix is used for
further conversion to pixel coordinates. This illustration is simplified, in
reality the image plane lies behind the projection center in direction of the
camera principal axis. [3]
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0
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cos(✓) 0 sin(✓) 0
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� sin(✓) 0 cos(✓) 0
0 0 0 1

1
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A

(2.3)

Rz =

0

B
B
@

cos( ) � sin( ) 0 0
sin( ) cos( ) 0 0

0 0 1 0
0 0 0 1

1

C
C
A

(2.4)

To include the translation (2.5), typically the representation in homogeneous coordinates
is used.

Txyz =

0

B
B
@

0 0 0 tx
0 0 0 ty
0 0 0 tz
0 0 0 1

1

C
C
A

(2.5)

The concatenation of these matrices gives the 4x4 extrinsic camera matrix which encap-
sulates rotation and translation from world to camera coordinates.

[R | t] = Rx ⇥Ry ⇥Rz ⇥ Txyz (2.6)

Intrinsic camera matrix
The fundamental intrinsic parameters of a camera can be described by the pinhole
camera model. In this model, the law of similar triangles leads to the relationship
between a point Pc in the 3D camera coordinate system and a point Pi in the two-
dimensional image coordinate system located on the cameras image sensor. Equation 2.7
shows how this law leads to the coordinate Xi in image coordinates. The distance from
the image sensor to the projection center is given as focal length f .

Xi

f
=

XC

ZC

) Xi = f
XC

ZC

(2.7)

To account for potential non-square pixels or different scaling factors in the x and y
directions of the image sensor, the focal length is split into fx and fy. With this fun-
damental connection the main diagonal of the intrinsic camera matrix K (2.8) can be
filled. The pixel coordinate system has its origin at the top-left corner, so cx and cy are
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the translation from this origin of the pixel coordinate system to the principal point.

K =

0

@

fx s cx 0
0 fy cy 0
0 0 1 0

1

A (2.8)

In addition, a skew-parameter s is introduced, accounting for non-orthoganility between
the x and y axis of the image sensor with angle ↵ between the axis. In modern cameras,
this angle can typically assumed to be 90 degrees.

s = �fx · tan(↵) (2.9)

Complete model
The complete camera model describes the rotation and translation from the world coor-
dinate system to the pixel coordinate system 2.10.

2

4

u
v
1

3

5 =

0

@

fx s cx 0
0 fy cy 0
0 0 1 0

1

A ·

0

B
B
@

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

1

C
C
A

·

2

6
6
4

X
Y
Z
1

3

7
7
5

(2.10)

As a result, the intrinsic matrix is given as an upper right triangular matrix. In concate-
nation with the extrinsic matrix as orthonormal matrix, Singular Value Decomposition
can be used to determine the components of these matrices by measuring 6 point cor-
respondencies and performing Direct Linear Transform. As in many cases the intrinsic
camera calibration is already given and 3D pose estimation of the camera are done sep-
arately in two steps, the following paragraphs delve deeper into this procedure.

Note that, due to the quality of digital sensors, one rarely estimates the 11 parameters
of the projection matrix. In particular, pixels are assumed to have no skew (s = 0),
and be square (fx = fy). Also, if an image has not been cropped, it is safe to assume
the principal point is at the center of the image. As a result, a common pinhole camera
model is just composed of 7 parameters: the focal length f , the rotation matrix R and
the translation vector T .

If using rectifying wide-angle images, resampling artifacts will be introduced as well as
field of view cropping. To avoid these issues, MVS pipelines can support radial distortion
and more complicated camera models directly, at the expense of extra complexity.

Lens distortion
The equation 2.10 only accounts for the pinhole camera model and does not include
various distorting effects like chromatic aberration introduced by the lens [5]. In basic
camera models, mainly radial and tangential distortion are considered. Radial distortion
(2.11) can be seen as curving of straight lines in an images, either inward (pincushion
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distortion) or outward (barrel distortion).

xradial, distorted = x
�
1 + k1r

2 + k2r
4 + k3r

6
�

yradial, distorted = y
�
1 + k1r

2 + k2r
4 + k3r

6
� (2.11)

The corrected coordinates in equation 2.11 depend on the radial distortion coefficients
k1, k2 and k3 and the euclidean radius r from the image center. Often k3 can be neglected
if the lens is not wide-angle.

Tangential distortion (2.12) occurs when the lens and image plane are not parallel and
is visible in an image by tilting straight lines. The tangential distortion coefficients p1
and p2 are considered in the model.

xtangentail, distorted = x+
⇥
2p1xy + p2

�
r2 + 2x2

�⇤

ytangentail, distorted = y +
⇥
p1

�
r2 + 2y2

�
+ 2p2xy

⇤ (2.12)

Camera calibration
For the task of calibrating a camera, the method introduced by Zhang [6] in the year
2000 still is used widely, e.g. by OpenCV, to receive the intrinsic camera matrix and lens
distortion parameters. In general, arbitrary points with known position in a 3D world
coordinate system could be used for camera calibration. But measuring the position of
these points and finding their correspondences in multiple images automatically suggests
to better use a repetitive 2D pattern with straight lines like a checkerboard for the task
of camera calibration.

Figure 2.2: Checkerboard used for camera calibration.

As a trick, for every frame used for calibration, the orientation of the coordinate system
is set with the checkerboard oriented in the x-y plane. This simplifies equation 2.10
to 2.13. 2

4

u
v
1

3

5 =

0

@

fx s cx
0 fy cy
0 0 1

1

A⇥

0

@

r11 r12 tx
r21 r22 ty
r31 r32 tz

1

A⇥

2

4

X
Y
1

3

5 = H ⇥ P (2.13)
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The homography matrix H then needs at least 4 point correspondences in each image.
To solve the given equations, at least three views of the plane must be given. The
parameters of the extrinsic camera matrix then stay the same for every point extracted
from a single point of view, while the parameters of the intrinsic camera matrix are
consistent for all observations. The exact algorithm is well explained in full detail by
Cyrill Stachniss. [7]

2.2 Plane Sweep Focus Algorithm

With well-calibrated cameras and known relative orientation between two camera views,
epipolar geometry can constrain the 2D search problem of finding corresponding points
in both images to a 1D line search problem. Figure 2.3 shows the epipolar geometry for a
pair of left and right images. In addition, the fundamental assumptions of this constraint

Figure 2.3: Epipolar geometry reduces the search region for point correspondences to a
line. The epipolar plane is formed by the projection center C1 and C2 of
both cameras as well as the point P in the real world. This is the foundation
for the Plane Sweep Focus Algorithm (PSFA). [8]

can be used to perform the PSFA. If the intrinsic and extrinsic parameters of both views
are known, the view from Camera 2 can be transformed to match the view of Camera 1
through a process known as image rectification, which aligns the epipolar lines but does
not necessarily represent a homography. Image rectification modifies the images from
both cameras so that the corresponding epipolar lines in each image become parallel
and horizontal, simplifying the matching process between images. The transformation is
typically represented by a 3⇥3 matrix that adjusts the orientation and scale but retains
the perspective of the original images.

The following explanation is rather untypical for the PSFA but should clarify how the
algorithm works. As visible in figure 2.3, the depth of a point P determines where
on the epipolar line the point’s projection in the second image plane can be found.
The virtual points P1..3 now represent one pixel in the first image but different pixels
in the second image. As the projected image plane is swept through different depth
hypotheses, the projection of a point only aligns with the pixel’s position in the second
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image if the depth of the point in 3D space is correct for this depth hypothesis. The
sweeping through different depth hypotheses does not typically result in visual focus
or blur but involves comparing different alignments or disparities to determine the best
depth estimate. Misalignments or incorrect depths will not show the typical visual effects
of focus but rather a lack of correspondence between the points in the image pairs.

Cost Volume Construction
The PSFA is used to construct Cost Volumes, which are crucial data structures in MVS
techniques, particularly when implemented in neural networks. Cost Volumes are 3D
volumes where each element corresponds to a potential depth value at each pixel loca-
tion in the image. This construction starts by defining a set of depth hypotheses across
the scene’s possible depth range. For each depth hypothesis, the algorithm transforms
or warps the images from multiple views to what they would look like if the scene was
located at that particular depth. This warping is performed using the known camera
parameters and a simplified projection model assuming the depth hypothesis is correct.
Once all images are warped to a common depth hypothesis, the next step is to calculate
the similarity or matching cost between the corresponding pixels of these warped images.
The similarity measurement typically involves comparing features extracted from the im-
ages, such as gradients, colors, or more complex descriptors. These features are designed
to be robust against changes in viewpoint and lighting, enhancing the reliability of the
matching cost. The calculated costs for each pixel across all depth hypotheses are then
compiled into the Cost Volume, where the value at each location provides a measure of
how well the pixels from different views agree with that depth hypothesis. Only if the
actual depth of a real-world point corresponds to one of the depth hypotheses will the
features from the images align well, resulting in a low cost. The ideal scenario is when
pixels representing the same 3D point in different images overlap perfectly, indicating
that the depth hypothesis might be accurate for that point.

However, several challenges affect the reliability of Cost Volumes. Non-Lambertian sur-
faces, which do not reflect light uniformly in all directions, and untextured areas, which
lack sufficient detail for matching, complicate the creation of accurate Cost Volumes.
These issues can lead to ambiguous cost measurements along the epipolar line, result-
ing in errors in depth estimation. Moreover, the resolution of the Cost Volume and the
granularity of depth hypotheses directly impact the precision and computational require-
ments of the MVS system. A higher number of depth levels increases the resolution but
also the computational load and memory usage. Thus, optimizing these parameters is
crucial for balancing accuracy and performance in real-world applications.

In advanced implementations, neural networks are employed to refine the initial esti-
mates from the Cost Volumes. These networks can learn to identify and correct typical
errors by analyzing large datasets of images, thereby enhancing the depth estimates
beyond what traditional matching algorithms can achieve. The integration of machine
learning thus represents a significant advancement in the field of MVS, opening up new
possibilities for accurate 3D reconstruction in diverse applications.
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2.3 Uncertainty in deep neural networks

The continual advancements in computational power, along with the availability of large
amounts of rapidly accessible memory, have made it feasible to tailor neural networks
to a diverse array of tasks. Neural networks consist of layers of interconnected nodes,
modeled after biological neurons, organized in a repetitive architecture. Theoretically,
sufficiently deep neural networks have the capacity to approximate any linear or nonlinear
function [9]. Consequently, they are increasingly employed in complex Computer Vision
(CV) tasks that were previously infeasible to perform artificially.

The following subsection 2.3.1 explores the various types of uncertainty that can be
identified in the context of neural networks. Subsection 2.3.2 introduces several methods
commonly used to quantify uncertainty according to these identified categories.

2.3.1 Categorization

When training neural networks, it is often assumed that testing data at least falls into
the same category as the training data. A neural network exclusively trained on dog
images will never be able to distinguish between a Mustang or a Golf or even a car
and a phone, as the network has never had any information about these instances and
is simply unable to tell them apart. Even worse, it might happen that these car test
images get related to a specific dog’s race with high probability because this so called
Out of Distribution (OOD) data has not been seen before.

As neural networks are more commonly deployed in the real world and potentially are
used in safety-critical areas of application, the determination how uncertain a model’s
prediction is becomes more important. It is especially important to distinguish between
the confidence of a model and a model’s uncertainty about a prediction. The confidence
of a prediction can be seen as the probability the network assigned to this outcome.
Especially in classification tasks the remaining problem can be seen as there might be
classes that have not been learned by the network - so they can not be predicted. But
the network is predicting a result for a given input and its confidence could be high for
a known class although it should know that the input does not fit to the information it
was trained on.

As discussed in the MIT lecture [10], it can be distinguished between four different types
of uncertainty:

• Known Knowns: Things we are certain of.

• Known Unknowns: We know there are things we can not predict.

• Unknown Knowns: Others know but we don’t know.

• Unknown Unknowns: Completely unexpected or unforeseeable events.

These categories provide a useful framework for understanding different kinds of uncer-
tainty. In the context of neural networks, this framework can be mapped to two specific
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types of uncertainty, namely aleatoric and epistemic.

Aleatoric uncertainty, also known as statistical uncertainty, corresponds to the inherent
noise in the data. It is similar to Known Unknowns, meaning there are aspects that
cannot be predicted due to the variability in the data itself. This type of uncertainty
remains even if an infinite amount of data was available.

Epistemic uncertainty, on the other hand, refers to the uncertainty in the model param-
eters and structure, similar to Unknown Knowns and Unknown Unknowns. This type
of uncertainty can be reduced with more data or a better model. It represents what the
model does not know due to limitations in its training data or design.

Following the approach of Kendall and Gal [11], this work distinguishes between these
two types of uncertainty to better manage and understand model predictions.

Figure 2.4: Data points with noise given to extrapolate a trigonometric function. The
noise inherent in the data describes the aleatoric uncertainty, while epistemic
uncertainty can be found in parts where no data is given. [12]

Aleatoric Uncertainty
Aleatoric uncertainty describes an irreducible type of uncertainty inherent in the data
itself. This uncertainty arises from the randomness or inherent variability in the system
being modeled, such as sensor noise or other forms of observational imprecision. A real-
world example of aleatoric uncertainty is the unpredictable nature of rolling dice, where
the outcome relies on factors impossible to measure with certainty. In the context of ma-
chine learning, aleatoric uncertainty manifests in the data used to train neural networks,
where it remains present even if the volume of training data is increased. This is because
the variations lie within the data itself, not in the knowledge or understanding of the
data. Figure 2.4 shows data points, e.g., taken from noisy measurements, representing a
function. It can be observed that aleatoric uncertainty prevails where data is given due
to the noise in the data. While the function can be extrapolated from the data provided,
a certain level of uncertainty always remains, indicating the irreducible nature of this
type of uncertainty.

Furthermore, aleatoric uncertainty can be decomposed into homoscedastic uncertainty
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and heteroscedastic uncertainty [13]. Homoscedastic uncertainty is uniform across all
observations and does not change with the input data. Heteroscedastic uncertainty, in
contrast, varies with the input data, becoming more pronounced in certain regions of
the input space than in others.

For instance, in financial markets, distinguishing between homoscedastic and heteroscedas-
tic aleatoric uncertainty is crucial for developing predictive models. During volatile peri-
ods, such as economic downturns or major political events, financial instruments exhibit
wide price fluctuations. This heightened volatility leads to greater variability in price
movements, or heteroscedastic uncertainty, increasing the overall aleatoric uncertainty.
Models trained on financial data need to incorporate this variability to accurately es-
timate risks during these unstable periods. Conversely, during stable market phases
characterized by minor price changes, the forecasting uncertainty is typically lower.
The inputs — market conditions — are more consistent and predictable, which reduces
prediction fluctuations. In such scenarios, understanding and modeling heteroscedas-
tic uncertainty allows financial models to adjust their confidence levels appropriately,
adapting to the prevailing market conditions.

In the course of this work, one methodology for discrimination between the homoscedas-
tic and heteroscedastic type of aleatoric uncertainty using EDL will be considered.

Epistemic uncertainty
Epistemic uncertainty, or model uncertainty, describes uncertainty that could poten-
tially be reduced with more data or better models. This type of uncertainty is inherent
in the model itself and manifests when there is insufficient data to support predictions
in certain areas. Figure 2.4 illustrates this concept, showing regions where the model
extrapolates beyond the available data, marking these areas as having high epistemic
uncertainty. If additional data were provided in these areas, the epistemic uncertainty
could be reduced.

Like aleatoric uncertainty, different sub types of epistemic uncertainty can be distin-
guished from each other. The following list provides an overview about possible sub-
types.

Subtypes of Epistemic uncertainty:

• Parameter uncertainty: This involves uncertainty about the optimal parame-
ters within a model, reflecting a lack of precise knowledge about the best values
for these parameters.

• Model Structure uncertainty: Concerns the uncertainty regarding whether the
chosen model structure adequately captures the underlying data patterns.

• Data uncertainty: Reflects the limitations in the datasets representativeness or
size, influencing how well the model can generalize.

• Algorithmic uncertainty: Arises from the limitations in the algorithms used
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to train models, including convergence issues or biases introduced by the training
process.

• Scenario uncertainty: Involves uncertainties due to unknown future conditions
or actions that are not captured in the model.

In the scope of this thesis, the last three types of uncertainty will be explored and
compared. Modeling Parameter and Model Structure uncertainty can be especially hard
and is out of scope for this work.

Summary
In mathematics and statistics, uncertainty is frequently characterized in terms of a prob-
ability distribution, which serves as a fundamental concept for quantifying and manag-
ing uncertainty in predictive modeling. While epistemic uncertainty reflects a lack of
knowledge about the most appropriate probability distribution to model the underlying
process, aleatoric uncertainty relates to the inherent variability present in the system
being observed. Both types of uncertainty play pivotal roles in the development and
application of statistical models.

Understanding epistemic uncertainty can lead to improved model selection and a more
precise estimation of model confidence, which is particularly vital in areas where data is
scarce or highly complex. On the other hand, effectively capturing aleatoric uncertainty
is crucial for realistic risk assessment and informed decision-making under conditions of
inherent variability.

By distinguishing between these uncertainties and recognizing their implications, statisti-
cians and data scientists can tailor their models to better reflect the realities of the data,
enhancing the reliability, interpretability, and overall effectiveness of their analytical
outcomes.

2.3.2 Traditional approaches

The exploration of uncertainty within the realm of neural networks remains an area
of open challenges to overcome. This section introduces methods to estimate different
types of uncertainty in the context of neural networks, while looking at the challenges,
especially in form of increased computational resource demands and the intricacies of
integrating uncertainty estimates into decision-making frameworks. The differentiation
between aleatoric and epistemic uncertainty, which has been introduced in the previ-
ous subsection 2.3.1, remains relevant in context of this section as there are different
approaches needed to quantify the different types of uncertainty.

Bayesian Neural Networks
Bayesian Neural Networks (BNNs) are an extension to the traditional approach of mod-
eling weights and biases in neural networks. They extend the traditional method by
incorporating Bayesian models, which allow a probabilistic interpretation of the model’s
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parameters [14]. In contrast to a traditional neural network, BNNs treat weights as ran-
dom variables, described by probabilistic distributions. A key element in this approach
is the Bayes Theorem (2.14), which updates the probability estimate for a hypothesis as
additional evidence is given.

P (A|B) =
P (B|A) · P (A)

P (B)
(2.14)

In the context of BNNs, A typically represents a specific set of values for weights and
biases as network’s parameters, and B represents the observed data. Initially, the net-
work’s parameters are assigned prior distributions that express the beliefs about these
parameters before any data has been given. As data is processed by the network, the
Bayesian update mechanism uses the Likelihood of the observed data under different
parameter configurations to update the posterior distribution of the parameters. This
posterior distribution encapsulates everything the network has learned from the data,
balancing the prior beliefs and the Likelihood of the observed data. BNNs can be par-
ticularly useful to model uncertainty and improve decision making in scenarios where
data may be scarce or noisy.

The update mechanism in BNNs operates iteratively. Each new piece of data provides
evidence that is used to update the posterior distribution of the network’s parameters.
This process is known as the already mentioned Bayesian updating mechanism. Mathe-
matically, it involves recalculating the posterior distribution using the new data’s Like-
lihood combined with the prior distribution, which is then normalized by the marginal
probability of the new data. This iterative process continues as more data is observed,
with the posterior distribution after processing one data point becoming the prior dis-
tribution for the next. Over time, this method adjusts the neural network’s parameters
to better model the underlying data structure, improving the network’s predictions and
uncertainty estimations.

Monte Carlo Dropout
A seminal paper by Gal and Ghahramani [15], titled Dropout as a Bayesian Approxi-

mation: Representing Model Uncertainty in Deep Learning from 2016 presents dropout
as a way to approximate Bayesian inference in deep neural networks. This work is foun-
dational in linking dropout to epistemic uncertainty.

As one approach that can be categorized under the Bayesian based approaches, this
technique called Monte Carlo Dropout (MCD) has been established [15]. Using dropout
while training is a regularization technique to prevent overfitting, with dropout referring
to deactivating some neurons with their connection. When introducing this technique
into inference of a network if running multiple times, the variance in the model’s predic-
tions can quantify the underlying uncertainty. This would include aleatoric as well as
epistemic uncertainty. To distinguish between both types of uncertainty, one approach
could be to use the variability of multiple measurements as indicator for aleatoric un-
certainty. If the total uncertainty is determined by the presented dropout technique,
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epistemic uncertainty could be calculated by subtracting the aleatoric uncertainty from
the total uncertainty gathered by multiple forward passes through the same network
using Monte Carlo Dropout.

Deep Ensembles
Another, rather computationally intensive approach is known as Deep Ensembles. This
method involves training of multiple neural networks, potentially with varying initial
weight parameters, and comparing their outcome [16]. Furthermore, there could be dif-
ferent subsets of the same training data or different hyperparameters be used for training
of the different models. On one hand, this makes the ensemble more robust to overfitting
by cancelling out the faulty predictions of single members when combining the results.
On the other hand, this provides the opportunity to quantify the uncertainty inherit in
the data or the model. One approach to estimate aleatoric uncertainty would be to train
the network directly to predict parameters of a probability distribution rather than a
simple estimation. With different members of the same underlying network, the vari-
ability in the predictions from the members reflects the epistemic uncertainty involved
in the process. If multiple members of the same network, all trained slightly different,
conclude to nearly the same outcome for a sample, in general they are certain about
their prediction and the estimation can be classified as robust. If the prediction varies
widely although there is only slight difference between the members of the model, it can
be assumed that the prediction of the ensemble has high epistemic uncertainty.

While providing a robust framework for estimation of uncertainty, especially the epis-
temic type, using multiple models while training and inference introduces a massive
overhead computationally and prevents this method, like Deep Ensembles, from real-
time applications as inference of dozens of models is rarely feasible in parallel.

2.4 Evidential Deep Learning

The concept of Evidential Deep Learning (EDL) was introduced in 2018 by Sensoy et al.
[2]. It adapts the Theory of Belief function from the Dempster-Shafer Theory (DST) to
the broader field of neural networks. As it marks the foundation for the concept, DST
is introduced first in section 2.4.1 to understand the basics of the concept. Using the
Dirichlet or Normal-inverse-Gamma (NiG) distribution, the following two sections 2.4.2
and 2.4.3 provide the mathematical background by diving deeper into the characteristics
of these distributions. The following section 2.4.4 explains how this approach of handling
probabilities is incorporated into deep learning and can be used to obtain measures of
aleatoric as well as epistemic uncertainty. In addition, variations of the original concept
as well as examples for the usage of EDL are presented.

2.4.1 Dempster–Shafer Theory

The DST, which is a general framework for reasoning with uncertainty, was published
in 1976 by Shafer [17] after initial work done by Dempster [18] in 1967. Inside most
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Bayesian probability modeling frameworks, uncertainty is represented by the distribution
of probabilities for different outcomes, which have to sum up to one. This traditional
type of probability modeling updates a prior belief using the observed data, resulting in
updated probabilities for the initial belief.

Mathematical concept
This concept differs substantially from the DST’s way of modeling uncertainty. Uncer-
tainty could occur from sources of different evidence or from under circumstances where
the relationship between cause and effect is unclear. The restriction of a probability sum
of one is not given for the DST where belief can also be assigned to a set of outcomes,
which includes the option to assign a probability to the fact that the outcome for a given
input is unknown. In DST, besides the belief for a certain outcome there is plausibility
for this outcome given as well. The belief function Bel describes the probability for dif-
ferent outcomes from the frame of discernment Θ. The frame of discernment describes
a set of alternatives that are complete and incompatible, so at least and at most one
statement is true. The belief function (equation 2.15) now accumulates all probability
masses that support the belief.

Bel(A) =
X

X✓A

mX (2.15)

The plausibility function Pl (equation 2.16) on the other hand measures how much the
evidence does not refute each possible alternative. It is calculated by the sum over all
Basic Probability Assignments (BPAs) that are not reasoning against the belief of a
given output A.

Pl(A) = 1� Bel(¬A) (2.16)

In DST, for the entirety of Θ there can be a BPA assigned as well. This would mean
there is no evidence for a subset of Θ, thus describing a scenario of complete uncertainty.
For the following example with possible weather conditions, this would mean any of the
included weather conditions is given. As this does not stand against any of the subsets
of Θ, this would be included in the plausibility function of all weather conditions.

To calculate the joint mass of belief functions, Dempster’s rule of combination, shown
in equation 2.17, is used.

m(A) =

(

0, if A = ;,
1

1�K

P

B\C=Am1(B) ·m2(C), otherwise,
(2.17)

For this equation, K can be seen as conflict between the two mass functions. This
normalization factor covers the belief for all cases that do not support the combined
statement A given by the combination of B and C.

K =
X

B\C=;

m1(B) ·m2(C) (2.18)
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Real-world example
To clarify the concept behind DST and its special attributes, a frame of discernment Θ
with different weather events is given as an example.

Θ = {Cloudy,Rainy,Windy} (2.19)

Assuming there are the following BPAs which have to sum up to one as they represent
proportions of the total belief. Each of the three weather conditions has its own prob-
ability to occur, but some combinations like weather that is Cloudy or Rainy has its
own source of evidence and is especially likely. In this example, this event gets its own
probability.

m({Cloudy}) = 0.1

m({Rainy}) = 0.2

m({Windy}) = 0.2

m({Cloudy,Rainy}) = 0.5

The belief function for the event Cloudy is given by the probability for this event.
The plausibility function on the other hand includes all BPAs that support this belief,
though do not stand against it. The belief and plausibility functions are then computed
as follows:

Bel({Cloudy,Rainy}) = m({Cloudy,Rainy}) = 0.5

Pl({Cloudy,Rainy}) = 1�m({Windy}) = 0.8

If it is assumed that this is not the only source giving evidence for upcoming weather
events, the joint mass of belief functions and Dempster’s rule of combination can be used
to fuse the BPAs of two sources of evidence into one model. In this second source of
evidence, there is only the belief for a Rainy day given, the rest of the probability mass
function is uncertainty U .

m2({Rainy}) = 0.01

m2({Windy}) = 0.95

Uncertainty = 0.04

The resulting belief mass calculated by Dempster’s rule of combination is given by m1+2.
As the second source only has Rainy and Windy as possible weather conditions, all other
options from the first source are not considered anymore and resulting BPAs are given
as:

m1+2({Rainy}) = 0.030

m1+2({Windy}) = 0.802

m1+2({Uncertainty}) = 0.169
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Figure 2.5: Probability Density Function (PDF) of the Dirichlet distribution. Three
values of ↵, which indicate probabilities for different classes, show how the
shape of the PDF is altered in respect to these values. [19]

For this calculation, the conflict is calculated by adding up the products of belief masses
from m1 and m2 that have no intersection as they contradict each other. As the two
sources have relatively contrary evidences, the conflict is given as K = 0.763. In this
example, some of the drawbacks of the DST can be seen. Given is a high belief in
windy weather given by the second source, resulting in a high normalization factor K.
With such a high normalization factor, there can occur unintuitive shifts in belief for
one option. Another problem might occur if the uncertainty is high, so no evidence can
be given to any of the options. A high level of uncertainty can make it difficult to draw
clear conclusions or make decisions based on the combined evidence.

In the end, DST provides a framework to handle evidence from different sources, in-
cluding the ability to deal with the uncertainty of events. There might occur problems
in extreme cases where two sources of evidence are giving contrary or highly conflict-
ing information. In such scenarios, Dempster’s Rule of Combination can lead to results
that are difficult to interpret or use for decision-making. The framework’s sensitivity to
the initial assignment of belief masses means that small changes in these assignments
can significantly affect the combined outcome. As the basis for EDL, DST is a part
of a larger toolkit for dealing with uncertain information and should be understood to
accomplish for its strengths and weaknesses.
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2.4.2 Dirichlet distribution

The Dirichlet distribution is a multivariate generalization of the Beta distribution and is
commonly used as prior distributions in Bayesian statistics. It is characterized as steady
and multivariate. The distribution is particularly useful in Bayesian models where one
needs to estimate multiple probabilities that sum to one, such as the probabilities of
different categories in categorical data.

f(x) =

(
1

Γ(α)βαx
α�1e

� x
β , if 0 < x < 1

0, otherwise
(2.20)

Equation 2.20 shows the definition of a Gamma distribution, a key building block for
understanding the Dirichlet distribution since it can be conceptualized as a distribution
over a simplex, which represents a vector space where the components sum to one, con-
structed from multiple independent Gamma-distributed components. The definition for
the Gamma function, which is integral in both the Gamma and Dirichlet distributions,
is given in equation 2.21.

Γ(↵) =

Z 1

0
tα�1e�tdt (2.21)

For the Dirichlet distribution, consider a vector α = (↵1,↵2, ...,↵K) of positive pa-
rameters, where each ↵i corresponds to the concentration of the i-th category. The
probability density function of the Dirichlet distribution is then defined for a vector
x = (x1, x2, ..., xK) in the K-dimensional simplex (i.e., xi � 0 for all i, and

PK
i=1 xi = 1)

as follows:

f(x;α) =
Γ(

PK
i=1 ↵i)

QK
i=1 Γ(↵i)

KY

i=1

xαi�1
i (2.22)

This distribution is extremely flexible due to the vector of parameters ↵i. Different
values of ↵i can shape the distribution differently, influencing how concentrated the dis-
tribution is around certain points of the simplex. When all ↵i are equal and greater than
1, the distribution is centered and fairly spread out within the simplex. If any ↵i is less
than 1, the corresponding xi tends to be closer to 0, pushing the distribution towards
the edges of the simplex. This flexibility makes the Dirichlet distribution a widely used
tool for expressing prior beliefs about the proportions in multiclass problems, including
EDL.

Figure 2.5 shows how the distribution behaves under different settings of concentration
parameters ↵. Each plot represents a probability simplex, which can be seen as a tri-
angle in 2D space, for three categories. The axes x1, x2, and x3 satisfy the condition
x1+x2+x3 = 1. The first plot with parameters (1.5, 1.5, 1.5) shows a relatively uniform
distribution across the simplex with a slight density increase towards the center, illus-
trating the symmetry and equal Likelihood of all categories. In the second plot, where
each parameter is increased to 5.0, the PDF is sharply peaked towards the middle, in-
dicating a reduction in variance and a concentrated distribution around the mean due
to higher symmetric ↵ values. The third plot with asymmetric parameters (1.0, 2.0, 2.0)
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shows a distribution more spread towards the higher values, biasing towards the second
and third categories over the first, reflecting the influence of unequal ↵ values. The
fourth plot (2.0, 4.0, 8.0) further demonstrates this effect by heavily skewing the prob-
ability mass towards the third category, which has the highest parameter, indicating a
strong preference or expected frequency for this category.

These visualizations show how different parameter configurations affect category fre-
quencies when dealing with categorical data, which in the end is learned by the model
if applied to EDL.

Figure 2.6: Probability Density Function of the NiG distribution. [20]

2.4.3 Normal-inverse-Gamma distribution

Another distribution used in context of EDL is the NiG distribution which can be used
as conjugate prior to the Normal or Gaussian distribution. As its function as prior
describes, it can be used if mean and variance are unknown and update the beliefs
about these parameters after new data is observed. There are four parameters that
describe this distribution:

• ↵ (Shape Parameter): This parameter influences the tail-heaviness and thereby
determinating the uncertainty about the variance. It shapes how the variance is
distributed, with higher values indicating less uncertainty.

• � (Scale Parameter): This parameter determines the rate of tail decay and di-
rectly influences the expected variance of the normal distribution, thereby affecting
the dispersion of variance values.

• � (Prior Mean): Represents the prior expected value of the normal distribution’s
mean, also described as µ0. It serves as the baseline for the mean, indicating where
the mean values are centered before any data observation.

• ⌫ (Precision of the Prior Mean): Affects the precision (inverse of variance) of
the mean’s prior distribution, declared as � in figure 2.7. Higher values indicate
a stronger and more precise belief in the prior mean, leading to less spread in the
distribution of �.
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Figure 2.7 visualizes the PDFs of the NiG distribution, illustrating how the distribution
changes with different values of the shape parameter ↵.

The contour plots in the left, middle, and right panels represent the distribution of the
variance �2 relative to the beta parameter � on the y-axis and the standardized devia-
tion

p

⌫/�(x��) on the x-axis, for ↵ values of 1.0, 2.0, and 4.0, respectively. In the left
panel (↵ = 1.0), the distribution indicates moderate uncertainty about variance with
less spread about the mean �, centered at 0 on the x-axis. As ↵ increases to 2.0 in the
middle panel, the spread of the variance decreases, showing narrower bands along the
y-axis and a tighter concentration around the mean, reflecting increased confidence in
both variance estimation and the precision around the mean �. In the right panel, the
distribution becomes more concentrated with significantly less variability in variance,
visible by reduction in y-axis spread, and an even tighter clustering around the mean,
suggesting a high level of certainty about both the variance and the mean.

The NiG distribution combines a Normal distribution for the mean � given the variance
�2, and an inverse gamma distribution for �2. Parameters � and ⌫ in the plots repre-
sent the mean and the precision of the mean under the normal distribution part of the
NiG. As ↵ increases, it affects both the shape of the inverse gamma by making it more
peaked and less spread and indirectly influences the normal distribution’s spread around
�, leading to less variability on the x-axis.

The vertical spread (�2/�) indicates the level of uncertainty in the variance, where, with
increasing ↵, smaller ranges suggest more confidence in variance estimations. The hori-
zontal spread (

p

⌫/�(x��)) shows how the data is spread around the mean �, becoming
narrower as ↵ increases, indicating more confidence in the mean’s position.

This demonstrates the NIG’s utility in Bayesian inference, particularly in modeling un-
certainty explicitly, such as in regression problems or robust predictive modeling.

2.4.4 The concept

The practical implementation of the EDL concept uses the Dempster-Shafer Theory com-
bined with the Dirichlet or NiG Distribution to effectively quantify the uncertainty of a
model’s output. These functions used as a conjugate prior within the DST framework
allow for a comprehensive probabilistic representation. Figure 2.7 shows the influence of
the NiG distribution on the lower order Likelihood.

The probability density function, defined in formula 2.23, uses a concentration vector
↵ = [↵1,↵2, . . . ,↵K ] for K hypotheses, representing prior observation counts for each
category, effectively quantifying the strength of the evidence for each outcome. The vec-
tor p = [p1, . . . , pK ] denotes the probabilities of each category, maintaining the constraint
that

PK
i=1 pi = 1.

f(p;↵) =
1

B(↵)

KY

i=1

pαi�1
i (2.23)
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Figure 2.7: Different shapes of the evidential prior, based on parameters ↵,�, � and �,
are presented on the left. For one set of values, the resulting lower order
Likelihood with decreasing variance when sampled more centric is shown.
The simplex of the prior directly influences the shape of the lower order
Likelihood, getting a variation of the Normal distribution out of the NiG
distribution. [21]

By manipulating the concentration parameters ↵, the model adapts to different levels
of uncertainty and evidence within the observed data. Higher values of ↵ correspond
to strong evidence and lower uncertainty, while lower values indicate sparse data and
higher uncertainty. This dynamic adaptation enables EDL to handle various degrees of
ambiguity in the data inputs.

Mathematical representation
Following the Bayesian inference, the likelihood of an observation yi given ! follows a

t-distribution with 2αi
degrees of freedom [22], with ! = (�, ⌫,↵,�) denoting a set of the

four parameters describing the distribution. The Student’s t-distribution is commonly
used in statistics for datasets with small sample sizes or unknown variances, and is more
robust to outliers than the Normal distribution. Equation 2.24 states the Likelihood
function LNIG

i of this distribution.

LNIG
i = St2αi

✓

yi | �i,
�i(1 + ⌫i)

⌫i↵i

◆

(2.24)

The observed parameter is denoted yi as an observation under the model defined. �i
describes the location parameter, usually the mean or median. The two parameters ↵i

and �i influence the scale and shape of the distribution, while ⌫i adjusts the weighting
of them.

In real implementation using the NiG distribution, the constraint for positivity of the
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three parameters ⌫,↵,� is enforced by a SoftPlus function while additionally ensuring
↵ > 1.

Loss function
During training, the loss function in EDL focuses on enhancing the accuracy of uncer-
tainty estimations as well as the predictions. The loss function L is formulated as the
negative logarithm of model evidence, with the goal of balancing precise predictions and
reliable uncertainty assessments. The following equations detail the components of the
loss function where ! represents the set of the estimated distribution parameters.

Ω = 2�(1 + ⌫) (2.25)

The term Ω is defined to regularize the evidence, which influences the model’s confidence
in its predictions. Here, � and ⌫ are the parameters that adjust the regularization
strength, ensuring that the evidence is appropriately scaled.
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The Negative Log-Likelihood (NLL) component, LNLL
i (w), measures the discrepancy

between the predicted distribution and the actual outcome. This term incorporates
the model’s uncertainty through parameters ↵ and ⌫, where ↵ represents the shape
parameter and ⌫ the scale parameter of the predictive distribution. The Gamma function
Γ is used to normalize the probability distribution. This component ensures that the
model fits the data well while adjusting its confidence based on the evidence.

LR
i (w) = |yi � E [�i]| · Φ = |yi � �| · (2⌫ + ↵) (2.27)

The regularization term LR
i (w) penalizes large deviations between the predicted mean

E[�i] and the actual outcome yi. The regularization factor Φ is a function of the model’s
estimated variance ⌫ and the parameter ↵. This term helps to prevent overfitting by
discouraging predictions that stray too far from the observed values.

Li(w) = LNLL
i (w) + ⌫LR

i (w) (2.28)

The total loss, Li(w), is a weighted sum of the NLL and the regularization term, con-
trolled by the hyperparameter ⌫. This combined loss function explicitly penalizes de-
viations from the expected outcomes and encourages precise uncertainty assessments
alongside accurate predictions. By optimizing this loss function, the model is trained to
be both reliable and confident in its outputs, providing a balanced approach to EDL.
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Figure 2.8: Schematic representation of the functionality of a LSTM Cell with input
gate it, output gate ot, forget gate ft and current cell state ct. xt denotes
the input and ht the output.[23]

2.5 Network layouts and functions

The proposed network uses a Long Short-Term Memory (LSTM) Cell setup and some
specific activation and loss functions, which are explained here in advance.

LSTM Cell
The LSTM Cell often is used in networks where spatiotemporal data is being processed,
as it keeps track of information by providing - as the name suggest - some kind of memory.
Although not using spatiotemporal data, this kind of neural network architecture will
be used in the realm of this work. Figure 2.8 provides an overview of an LSTM Cell’s
general layout and functionality. The equation for one of the gates inside the LSTM
network is given by:

ft = �g(W ⇤ xt + U ⇤ ht�1 + V � ct�1 + b) (2.29)

Where:

• ft is the output of the gate at time t.

• �g is a sigmoid function that controls the gate activation.

• W , U , and V are the weight matrices applied to the input, previous hidden state,
and previous cell state, respectively.

• xt is the input at time t.

• ht�1 is the hidden state from the previous time step.

• ct�1 is the cell state from the previous time step.

• b is the bias term associated with the gate.

• The operator ⇤ represents convolution, used to combine the input with the weights.
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• The operator � represents element-wise multiplication, used to modulate the influ-
ence of the previous cell state by the current gate.

As described by this equation, each cell uses three learned matrices W , U and V and a
fixed bias of b.

The input xt is fed into all three gates as it generally is the foundation for further
operation inside the cell.

The Input Gate combines the current input and the previous hidden state to create a
candidate memory which represents a possible update to the current cell state.

The Forget Gate plays a role for the decision, which information from the previous
cell state ct�1 should be kept and what would be discarded. Generally it takes the new
input xt and the previous cell state ct�1 as input. After processing with convolutions,
the sigmoid function creates a mask ranging from 0 to 1 which is than multiplied with
ct�1. This determines how much influence different parts of the previous cell state ct�1

have for the calculation of the next state.

The Output Gate determines which parts of the current cell state ct should be used
to generate the current hidden state Ht. Like the forget gate, it uses xt and ct as inputs
but the result of the convolution inside the cell is directly concatenated with the state
ct processed beforehand by an activation function.

Functions
The Softmax Activation (equation 2.30) is often used to covert the output of a neural
network’s layer into a probability distribution due to the characteristics of its output.
The values are normalized to sum up to one, which checks a preliminary requirement
for a probability distribution. In addition, it softens the distribution over probabilities
by increasing the resulting values for probabilities that are high compared to others.

f(s)i =
esi

PC
j esj

(2.30)

The Cross Entropy Loss (equation 2.31) is also widely used in the field of Machine
Learning (ML). Usually a one hot encoding vector ti is used where the correct class is
assigned a value of 1 and all other elements are 0.

CE = �
CX

i

ti log (f(s)i) (2.31)

Softmax Loss now is actually just a Softmax Activation plus a Cross Entropy Loss.
In the end, the goal is to assign a high probability to the right class while reducing the
probability for all other classes. This is ensured by the Softmax Activation in combina-
tion with Cross Entropy Loss by minimizing the negative sum.
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The Mish Activation Function is defined by the equation:

Mish(x) = x · tanh(log(1 + ex)) (2.32)

Mish is a smooth, non-monotonic function that combines the properties of Rectified Lin-
ear Unit (ReLU) and softplus. It enhances model learning capabilities by maintaining a
smooth gradient flow over a wider range of values, helping prevent the loss of information
during backpropagation, which is a common issue with ReLU when inputs are negative.
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3 Related Work

The task of reconstructing a 3D scene from images has been addressed through various
approaches and techniques, with deep learning methods significantly improving perfor-
mance in recent years [24]. This chapter provides a comprehensive review of the related
work, focusing on methods that incorporate uncertainty in depth reconstruction.

In section 3.1, different approaches for the task of MVS are presented, emphasizing
methods that consider uncertainty. This section covers both, traditional techniques and
modern deep learning based methods, and explores where uncertainty is already consid-
ered in MVS pipelines. An overview can be found in appendix 8.15. The subsequent
section 3.2 delves into methods incorporating the concept ofEDL from various fields, out-
lining the foundation for the aimed for integration into MVS in this work. Datasets that
can be found in context of MVS, some of which are used in the conducted experiments
in chapter 6, are presented in section 3.3 with an overview presented in appendix 8.16.
Finally, section 3.4 concludes with a discussion on notable concepts and identifies gaps
in the current research. This last section aims to provide insights into potential areas to
integrate uncertainty in 3D reconstruction methods.

3.1 Multi-View Stereo

The term Multi-View Stereo (MVS) describes techniques utilized to construct a detailed
3D model from multiple images captured from various viewpoints of a scene. Typi-
cally, MVS techniques require known camera parameters; this includes both intrinsic
and extrinsic parameters, as well as the relative orientation of each camera. How to
gather these prerequisites is outlined in chapter 2. Unlike single-view reconstruction
techniques, MVS does not rely on a prior shape model but instead uses multiple images
to extract depth information through the comparison of multiple perspectives. This ap-
proach allows MVS to effectively reconstruct complex surfaces and intricate details that
might be lost in other methods.

MVS algorithms function by pinpointing correspondences among multiple images to as-
certain the three-dimensional configuration of the scene. They exploit the overlap in
images, utilizing distinctive features such as edges, textures, or colors to align points
across different views. Once these correspondences are confirmed, methods like tri-
angulation are employed to determine the depth and position of points within space,
ultimately producing a comprehensive three-dimensional model.

The advantage of MVS over other stereo methods lies in its robustness and ability to
reconstruct scenes with high accuracy. Because it integrates information from multiple
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views, it can resolve ambiguities and occlusions more effectively than two-view stereo
systems. There are some related areas of research that should be distinguished from
MVS, as they rely on a different set of input parameters. Methods within the MVS
domain are typically applicable in scenarios where cameras are configured in a fixed,
rather experimental setup. Examples include multiple cameras mounted on a vehicle or
cameras attached to a handheld or camera arm. These setups are similar to those used
in the datasets discussed in section 3.3.

Related areas of research
If the camera parameters are not known in advance, related methods to get a 3D struc-
ture of a scene from images are referred to as Structure from Motion (SfM). It can be
used as a first step in a 3D reconstruction pipeline to get the required parameters and
perform MVS. In SfM, typically distinct feature points are searched in each image, eg.
by using algorithms like Scale-Invariant Feature Transform (SIFT). This method tries
to identify image regions that are invariant to scaling and rotation, which can than be
matched in different images. While SIFT can identify regions by including the gradients
of neighbouring pixels, matching can be performed down to pixel level accuracy. When
SIFT features are matched, epipolar geometry can be applied to better find correspond-
ing features and filter out mismatched features. If the needed camera parameters are
not given in advance, Zhang’s method [6] can be used for calibration.

For the related task of monocular depth estimation there are some approaches that con-
sider the uncertainty of their results [25, 26]. In particular, Poggi et al. [27] estimate the
uncertainty in their model for the self-supervised case. They find that the consideration
of uncertainty improves the accuracy of the depth estimation and can be used for the
proposed learning techniques. Hornauer and Belagiannis [28] use an auxiliary loss func-
tion to estimate the uncertainty while using an already trained neural network. Wang
et al. [29] dive deep into the consideration of aleatoric uncertainty on a pixel-wise level.

In the case of stereo images the work by Mehltretter [30] stands out as it combines
aleatoric and epistemic uncertainty and introduces both in a neural network with the
ability to be trained end-to-end. Wang et al. [31] introduce EDL to depth estimation
from stereo images. They use two loss functions to improve the results of uncertainty
estimation and to ensure smoothness of the uncertainty estimates in regions where the
disparity changes smoothly.

Conventional methods
Early MVS methods include the usage of volumetric methods [32] where a 3D grid of
voxels is used to represent the hull of the object. If a voxel contains surface pixels from
multiple viewpoints, it is considered as part of the objects surface. Another method
is space carving [33] where an initial hypothesis of an objects location in 3D space is
iterated until its appearance is consistent with all views. Parts of the object that are
not visible from the provided cameras perspectives are discarded. As the algorithm
starts with an initial large, unshaped volume and defines it step by step, the process
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was referred to as carving. Another technique beside the nowadays established usage
of deep learning are patch-based methods [34]. These algorithms start with feature
extraction from the different views and matches them over these views. These matched
features form the corners of small patches that grow in an iterative way while checking
for photo-consistency in each step. Newer and more sophisticated methods introduce
various concepts of deep learning to the field of MVS to extract and match features of
different viewpoints.

Before the broad utilization of neural networks, COLMAP [35] made a huge contribution
to the field of CV by delivering a robust algorithm for various tasks like SfM and MVS. It
proved its scalability through extensive testing on a large scale dataset of Rome and its
key contributions are still used in recent works [36]. The DeMoN network [37] introduced
deep learning techniques, in particular an encoder-decoder structure, to the task of SfM.
The authors include the training by artificially generated variations of the original input
data to generate more training examples and make the network more robust.

Deep learning methods
As a remarkable starting point for the usage of neural networks, MVSNet [38] was intro-
duced in 2018 and has since been used in various following works [39, 40] with different
variations to the original method. They extract features from the images, use Differ-
entiable Homography and optimize the selection of the right depth hypothesis with the
Softmax function. The work by Li et al. [41] from 2020 combines the concept of Patch-
Match [42] and deep learning. It is especially suitable for high resolution images and and
has another focus on the prediction of the results confidence. Similarly, the Deepc-MVS
network by Kuhn et al. [43] considers uncertainty as it focuses on the prediction of the
network’s confidence. The refinement of 3D reconstruction results by consideration of
uncertainty measures boosts the networks performance and shows how uncertainty pre-
diction can also be a viable solution to increase a network’s confidence and prediction
results. Cheng et al. [44] make uncertainty consideration a crucial part of their network
architecture as well as they use multiple stages to refine their depth prediction based
on the uncertainty found in the previous stage. In their network setup, first a feature
extractor with multiple stages is used to get feature representations of the images in
varying resolutions. These features are warped into one reference view to form a Cost
Volume which is then processed by a 3D-CNN to form a Probability Volume. Then they
consider the uncertainty included in the Probability Volume to form a Cost Volume with
different depth, called Adaptive Thin Volumes, in the concurrent stages.

In 2021, two interesting works have been presented. The paper Digging into Uncertainty

in Self-supervised Multi-view Stereo by Xu et al. [45] introduces the consideration of epis-
temic uncertainty by using the technique of MCD. They use a self supervised learning
approach and exclude pixels with high uncertainty from the contribution to learn. The
work by Wei et al. [46] on the other hand does not consider uncertainty but uses an At-
tention mechanism to make context-aware feature processing possible. In 2021 it was one
of the best performing approaches for the most recognized benchmarks. As Transform-
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ers have been introduced to many areas of research [47] including nowadays commonly
known Large Language Models (LLMs) like ChatGPT, they are as well used in context
of MVS [48, 49]. The work by Su et al. [50] named Uncertainty Guided Multi-View Stereo

Network for Depth Estimation combines the training of a uncertainty map and the depth
map. They use a Cost Volume and adaptively determine the depth search range for finer

stages. Two rather memory efficient methods are introduced by Wan et al. [51] and Mi
et al. [52]. The former declares the search process for the right depth hypothesis as a
binary search problem. Vis-MVSNet [53] especially considers the visibility of pixels and
incorporates a view selection mechanism where information from the most informative
view is taken. The recent work by Song et al. [54] uses a Bayesian Probability Volume
to consider the aleatoric uncertainty. GeoMVSNet [55] can be considered as one of the
top-performing SotA networks with special attention to capture the geometric structure
given in a scene. Chen et al. [56] do consider epistemic uncertainty in their network and
propagate the uncertainty information through the network for different depth hypoth-
esis. Liao and Waslander [57] propagate the uncertainty information through the whole
3D reconstruction pipeline until they can enrich the final object’s mesh with uncertainty
information.

3.2 Evidential Deep Learning

The work of Sensoy et al. [2], published in 2018, layed foundation for further development
of EDL, introducing this new technique to quantify uncertainty in neural networks.
Based on the theoretical concept developed by Dempster [18] and Shafer [17], they
used the Dirichlet distribution, introduced in section 2.4.2, as prior. A survey from
2021 [58] outlines the following development. In a follow up work, Sensoy et al. [59]
trained a similar model in 2020 using a contrastive loss with artificial OOD samples

from a Variational Autoencoder. While these posterior networks are able to model
epistemic and aleatoric uncertainty by incorporating observed data, also prior networks
have been introduced [60, 61, 62]. These networks only incorporate epistemic uncertainty
estimation in advance for an easier to train procedure.

Regression based methods like the work presented by Amini et al. [21] in 2020 use a
different set of evidential priors. In this case, they use a NiG distribution as prior over
a Gaussian likelihood function. The model was trained to predict molecular properties
and showed reliable and robust results. Other regression based methods also incorporate
other prior distributions [63] and can depict other distributions than Gaussian [64].

Applications
The concept of EDL is used in graph neural networks [61] and for Open Set Recogni-
tion (OSR) [65] where samples belonging to unkown classes are identified. The ability
of EDL to model these unknown classes can be marked as one of the main advantages
over traditional methods of deep learning. Pandey and Yu [66] use EDL in context of
meta learning where a model should adapt to a minimal amount of new training data
rapidly. Another way to adapt the network’s parameters is active learning where some
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instance, for example a user, is asked to provide labels for data and thus provide the
information for further training to the network. In context of EDL active learning was
used by Hemmer et al. [67]. As a practical implementation used in real world scenarios,
Soleimany et al. [68] use EDL to predict a molecule’s property.

Lou et al. [69] use EDL for the task of Deep Stereo Matching (DSM). They find that
a costvolume-based model is not robust in regions with large illumination changes while

transformer-based model does not make full use of complex local textures. To overcome
these issues, their model architecture uses a Cost Volume as well as a transformer based
approach, each using the principle of EDL to gather the Dirichlet distribution’s variables
and fuse them in an Inter evidential fusion model. In the work by Wang et al. [31], EDL
is used for DSM in a simpler way.

Aguilar et al. [70] use EDL in a continual learning framework called CEDL which in-
tegrates OOD detection. The same use case has been covered by Cao and Zhang [71].
Their approach improves OOD detection by combining eight normalization and a novel
network architecture, achieving perfect results on difficult datasets.

Variations
Based on the somewhat dated work by Amini et al. [21], recent contributions have built
upon and improved the original research, advancing scientific knowledge.

Meinert et al. [22] question why the concept behind EDL seems to perform alright in
practice while they find some theoretical flaws in the mathematical background of the
concept. They question the ability of the presented Loss function to find a global min-
imum due to the dependency on a specific parameter. In addition, they suggest new
formulas to describe the aleatoric and epistemic uncertainty out of the NiG’s parame-
ters. Their new interpretation of these types of uncertainty influenced this work, as their
set of formulae is used as Default implementation method in this work. Their way to
mathematically describe aleatoric and epistemic uncertainty will be compared against
the original paper’s implementation in chapter 6.

In 2021 the paper Multivariate Deep Evidential Regression has been published by Mein-
ert and Lavin [72]. It enhances the framework by adapting to multivariate regression
tasks, like found in traffic flow analysis. They use a loss function specifically adapted to
this task.

Nagahama [73] introduces a concept called modified-EDL. It extends the classical ap-
proach to perform EDL with the ability to better deal with new, unknown classes. It
adds an additional class to the set of possible outcomes which represents unknown classes
and performs better in scenarios where unknown classes do occur.

Deng et al. [74] argue that traditional mean-square error-based learning approaches im-
pede the acquisition of evidence, particularly in instances of samples characterized by
high data uncertainty. To address this limitation, they implement a Fisher Information-
based Evidential Deep Learning (FIEDL) framework, which quantifies the informational
content inherent in individual data samples. This framework utilizes Fisher Informa-
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tion to assess the informativeness of data and accordingly adjusts the weighting of loss
terms. This method is notably effective in modulating the learning process for samples
that exhibit significant aleatoric uncertainty if they are represented by one-hot vectors.

3.3 Datasets

Over the years, several publicly accessible datasets in the domain of MVS have been
released, as detailed in Appendix 8.16. Notably, the Middlebury MVS dataset [75]
stands out as the initial dataset widely acknowledged and utilized in this field. Despite
its limitation of featuring only two objects, the diversity of viewing angles available
within this dataset is commendable.

Figure 3.1: A representative scene from the DTU dataset, widely used among re-
searchers.

Ten years after its release, in 2016, the quasi standard benchmark to this date and
foundation for the training procedures of many machine learning approaches, the DTU
dataset [76], has been released. In comparison, it does not sample synthetic images from
a retrieved 3D model but is using a high precision camera arm to gain photos of small
objects from exact positions. In addition to variations in the camera arms position, also
the lighting intensity and direction is altered, so algorithms can be optimized to deal
with the various challenges introduced by shadows.

Both datasets could be categorized as laboratory setups capturing small objects, while
the three datasets released in 2017, namely ETH3D [77], ScanNet [78] and Tanks and
Temples [79], focus on indoor and outdoor scenes. Remarkably, the ETH3D dataset
has semantic annotations for objects that can be found in the scene, so in theory one
could use its annotations to reconstruct individual objects, too. This dataset also uses
relatively cheap sensors to retrieve its 3D information and has a large amount of images
included in the dataset. Besides the task of MVS it is often used for performance analysis
of methods in the field of semantic segmentation. In addition to high resolution images
and precisely matched LiDAR scans, the ETH3D dataset provides video sequences of the
scenery, including various fields of view. This can especially be advantageous in some
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Figure 3.2: Reconstruction resuluts of various scenes included in the Tanks and Temples
(TnT) dataset. [38]

approaches for SfM which require video-like image sequences with small inter-frame
variations.

The Tanks and Temples (TnT) dataset has been established itself as a remarkable bench-
mark and widely used option for inter-benchmark performance testing in the field of
MVS. Its data is made of high precision LiDAR scans enriched with RGB data from
high resolution video cameras. Other than the name suggests, it not only contains tanks
and old statue, but also scenes like the Ballroom with huge dimensions. As a key feature,
the goal was to capture scenarios of the real world and they - in comparison to the DTU
benchmark - went from a laboratory setting to capturing their data in the real world.

The Blended MVS dataset [80] was introduced in 2020 alongside an expansion, known
as Blended MVG dataset, which was released within the same year. This dataset em-
ploys a specialized 3D reconstruction pipeline to extract three-dimensional information
from images across diverse scenes. It encompasses a broad spectrum of scenes including
drone-captured images of buildings and detailed captures of smaller objects, offering a
substantial variety and volume of data.

In 2022, the UrbanScenes3D [81] and the GigaMVS [82] datasets have been released.
Both focus on large sceneries, in case of UrbanScenes3D complemented with synthetic
CAD models of such scenes. The GigaMVS dataset is truly remarkable for its scale and
use of high resolution photos. The creators of this dataset especially want to challenge
MVS methods to deal with these enormous amounts of data with sceneries taking up to
32.000m2 and billions of points in their reference point cloud. Its scenes contain parts
of urban areas, buildings and archaeological sites.

As a relatively new dataset, Skoltech3D [83] from 2023 can be mentioned in the context

33



of MVS datasets. It has been captured in a laboratory environment with multiple scan-
ners and camera mounted to a rig, which makes it interesting for comparing the results
of various capturing methods and resolutions. Like the DTU dataset it includes various
lighting conditions and one hundred viewing directions for each object scanned.

3.4 Discussion

While CV in general and 3D reconstruction from Stereo as well as Multi-view Stereo in
particular present a field of research with remarkable interest, the estimation and inte-
gration of methods to determine uncertainty has not been tackled in many approaches.
Especially for deployment in risk averse areas, knowledge about the uncertainty of a
prediction or the recognition of a model’s inability to produce a trustworthy prediction
could be crucial to even consider real-world application of such systems. The need for
these systems might be missing to this point as roll out of real-world applications for
safety-critical MVS applications might be held back due to other limitations. But know-
ing about cases or areas where a deep neural network’s predictions are not trustworthy
might be essential one day.

Works like the one presented by Su et al. [50] do incorporate estimated uncertainty pre-
dictions to refine the estimated depth with success for the stereo case. As this seems
promising for the case of MVS as well, there can various methods be found that incor-
porate aleatoric uncertainty, as the found in appendix 8.15 suggests. But most of those
methods do lack incorporation of epistemic uncertainty, which seems to be a major
problem to reliably detect OOD data. Methods that do incorporate epistemic uncer-
tainty [45, 56] use techniques that lead to a massive computational overhead. This is
a major drawback and can make those setups completely unusable for application be-
side an experimental laboratory environment. If modern networks for 3D reconstruction
from MVS scratch the abilities of cutting edge hardware, training of multiple networks
or inference on dozens of members of one network often is not possible, especially not in
real-world applications needing near real time execution.

Due to limitations in existing methodologies, the integration of EDL into the domain
of MVS has emerged as a promising research area, attracting considerable attention
for the reasons detailed previously. Although Wang et al. [31] have demonstrated the
effectiveness of EDL in Stereo Vision, its application in MVS remains unexplored. A
notable advantage of EDL, as discussed in Chapter 2, is its efficiency in terms of memory
usage and computational demand, while adeptly handling both aleatoric and epistemic
uncertainties. Consequently, EDL represents a compelling method for quantifying uncer-
tainty in 3D reconstruction tasks within MVS, devoid of many limitations characteristic
of alternative approaches.
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4 EMVSNet

The methodologies developed in this work are designed to model uncertainty along with
the reconstruction of scenes in 3D from Multi-view Stereo. Due to the factors mentioned
earlier in this work, the usage of EDL seemed to be a reasonable choice, only relying on
methods introduced by deep learning and marking an approach never before introduced
to the field of MVS.

The structure of the Neural Network developed in this thesis called EMVSNet relies as
foundation on the work of Wei et al. [46] presented on International Conference on Com-
puter Vision (ICCV) 2021. Their Adaptive Aggregation Recurrent Multi-view Stereo
Network (AA-RMVSNet) can be used as a solid previous work proven to effectively
overcome the challenges introduced by the task of 3D reconstruction from MVS. The
approach has a modular structure which allows for variations in the amount of viewing
directions used while maintaining a comprehensive performance to other methods intro-
duced to the field of MVS.

As secondary part of the proposed EMVSNet, a work by Lou et al. [69] delivers the
fundamental concept for the part of the network which estimates the NiG distribution’s
parameters. Originally, this concept uses a 3D Cost Aggregation as well as Stereo Trans-
former to extract the evidential prediction parameters at different stages of the network
and fuse them for a combined prediction. Various concepts used by these preliminary
works are reused in this work and will be explained in the following in more detail.

Final goal of the proposed method is the determination of estimated depth and aleatoric
as well as epistemic uncertainty. This is achieved using a set of input RGB images
of dimensions w ⇥ h, with one reference view and associated source views of the same
dimensions. The reference view is chosen so it represents the central frame, capturing
movement in all directions within a continuous set of images. This set of images is also
characterized as set of stereo images, so overlapping image areas must exist.

The depth and uncertainty predictions are performed on a per pixel level, associating
each pixel of the reference view a predicted depth based on a predefined depth range rd.
Aleatoric and epistemic uncertainty are defined on a per pixel level as well, calculated
through the set of parameters p = (↵,�, �, ⌫) for each pixel.

With the chosen NiG distribution as a prior, the distribution of the input data is assumed
to be Gaussian. This assumption encompasses image noise, disparity uncertainties within
views, and uncertainties about the model’s parameters. Furthermore, it is assumed that
the individual observations are independent of each other and that the uncertainties can
be adequately described by the NiG distribution.

35



Section 4.1 presents the specific network structure and explains important design choices.
In section 4.2, the chosen mathematical representation for uncertainty and Loss are pre-
sented, while section 4.3 deals with possible adaptions of the presented method, including
outlook for follow-up work.

Figure 4.1: Overview over the proposed EMVSNet network structure. For multiple im-
ages as input, parameters of the NiG distribution are predicted per pixel,
which are then used to calculate aleatoric and epistemic uncertainty.

4.1 Network structure

The structure of the proposed network is split into following parts: The feature extrac-
tion including the Intra-view Adaptive Aggregation Module, followed by homography
and a preliminary Cost Volume construction which is presented in section 4.1.1. Regu-
larization and refinement of this network structure leads to a Probability Volume which
is as preliminary step processed by an LSTM network (section 4.1.2). Based on the
Probability Volume available at this point, the prediction of parameters used for EDL
follows, which is explained in detail in section 4.1.3.

4.1.1 Feature extraction and Cost Volume creation

Input for the given network is a set of images I1..k for k source views from different di-
rections. For the homographic warping executed in following steps, the extrinsic camera
parameters between source and reference view must be known as well.

Figure 4.2: Feature extraction pipeline of EMVSNet. Per image, one Cost Volume is cre-
ated and warped into the reference view. Those Cost Volumes are combined
and refined as Probability Volume, marking the input for the EDL part of
the network.
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Overview first part
Multiple images from different viewpoints, represented as W ⇥H⇥3 matrices containing
RGB information, in combination with their extrinsic rotation matrices, mark the input
for the presented network structure. First step of the pipeline is the extraction of rele-
vant features from each input image, including processing inside an Intra-view Adaptive
Aggregation Module. The feature maps, enriched with contextual information about the
image, are afterwards transformed to match the viewing direction of the reference view
using homography. As a result, warped Cost Volumes Cw

1..k for the difference between
reference view and source views can be calculated. These mark the input for an Intra-
view Adaptive Aggregation Module which weights the information and matching cost of
the different viewpoints, combining the information into one Cost Volume Cc. This Cost
Volume is further refined by a Recurrent Neural Network (RNN)-Convolutional Neural
Network (CNN) Hybrid Network which incorporates LSTM network layout. As result a
refined Cost Volume Cr marks the output of the first part of the network and is used for
further processing and extraction of the EDL parameters. The processes and network
layout are introduced in section 4.1.3.

Figure 4.3: Feature extraction pipeline of the network.

Feature extraction
From each individual image for each viewing direction, features are extracted using a
shared backbone feature extraction block. Figure 4.3 visualizes the feature extraction
pipeline for each individual image marking the input. After various convolutions, a
specialized Intra-view Adaptive Aggregation Module follows until the output marks a
feature representation of each image, still represented in its original viewing direction.

Intra-view Adaptive Aggregation Module
The Intra-view Adaptive Aggregation Module (fig. 4.4) marks an interesting approach to
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Figure 4.4: Layout of the Intra-view Adaptive Aggregation Module.

tackle problems often faced in MVS where surfaces contain areas without much texture,
lacking information. For these regions of an image, or more precisely, parts of surfaces
visible from multiple viewpoints, point-to-point matching can be challenging due to in-
distinguishable features. Also variations in the scene like changing lighting conditions
such as reflections represent challenges that must be overcome to perform MVS.

The DeformConvGNReLu layer marks important part of the network. Deformable
Convolutional Networks (DCNs) allow for adaptable receptive fields, which means they
can modify the spatial sampling locations in the input feature maps according to the
input data. This characteristic is particularly beneficial for handling geometric defor-
mations within images, such as those caused by reflections or irregular surfaces. This is
done by learning an offset beside the usual stride used in regular convolutions. This al-
lows for the concatenation of features from different regions and finally allows for unique
features in regions where otherwise feature uniformity would result in loss of detail and
inability to distinguish between different objects or phenomena within the same spatial
context.

Additionally, the module uses Feature Pyramiding and Hierarchical Processing.
The module processes inputs of different resolution (x0, x1, x2) through separate path-
ways initially, which are then merged. This approach is known as a feature pyramid,
where features extracted at various scales or resolutions are combined. By doing so,
it effectively captures both high-resolution details and broader contextual information.
This can be especially useful when dealing with reflections, as it helps in distinguishing
the reflected features from the actual features by considering information at different
scales.

The ConvGNReLu Layer is build from a combination of convolutional layers in addi-
tion to group normalization while using ReLU as activation function. This is a typical
layout for a layer in a neural network to perceive visual information. The convolutional
layer extracts features which are than normalized to ensure stable and cosistent train-
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ing. The ReLU activation function ensures the necessary non-linearity to learn complex,
non-linear pattern efficiently.

To be able to match features of different resolution, Interpolation and Up-Sampling
is being used. Due to down-sampling or due to the deformation handling in previous
layers information is being lost, so combining low resolution and higher resolution fea-
ture maps is unavoidable. Interpolating to a higher resolution and then combining it
with other feature maps ensures that the network utilizes both local detail and global
contextual information, crucial for analyzing complex textures and surfaces like shiny or
reflective ones.

The final Concatenation of the upscaled feature maps from different resolutions with
applied DCN results in a rich diversified feature map representation of the input image
even in regions of uniformity in RGB space due to the processing in different resolutions
with features taken from different parts of the image.

Figure 4.5: Homography warping is performed depthwise after feature extraction.

Homography
After extraction of relevant and rich feature maps F1..n for each input image Ix, views
are morphed using homography so all of them match the reference viewing direction.
Overview of the process is provided in figure 4.5.

The homography warping block performs depth-aware image warping based on source
and reference projection matrices, allowing for perspective transformations of source
features into a target or reference view. Initially, the function computes a combined
projection matrix by multiplying the source projection matrix with the inverse of the
reference projection matrix. This combined matrix encapsulates the transformation
needed to map points from the source to the reference coordinate frame.

The function then applies a depth value to each point in the source feature map. This
step involves generating a meshgrid of pixel coordinates, which are converted into ho-
mogeneous coordinates and transformed using the computed rotation and translation
components of the projection matrix. As result, the feature map is available in reference
view direction. To get a representation in 3D space, the 2D feature map is scaled by the
provided depth values, resulting in a feature matrix with depth of the desired amount
of depth values, repeatedly filled with the 2D feature maps. In the end, this process
projects each pixel’s location into the 3D space defined by the depth and camera param-
eters.

After projecting the coordinates, the function normalizes these to ensure they fall within
the image boundaries, preparing them for the final resampling step. Source features are
warped onto the reference view based on the computed grid. This sampling uses bilin-

39



ear interpolation, preserving continuity and reducing artifacts. The output is a new set
of feature maps that represent the source image as viewed from the perspective of the
reference camera, adjusted for depth.

Cost volumes
This set of feature maps can now be used to calculate warped Cost Volumes Cw. For this
the squared difference between warped features from the k-th view Fw

k and the reference
view F r is calculated.

Cw
k = (Fw

k � F r)2 (4.1)

After this step, a reweighting takes place that is performed inside the cost regularization
and refinement part of the network.

4.1.2 Regularization and refinement

Set up with Cost Volumes describing matching cost between the features of each source
view and the reference view, this part of the network takes care of comparing the infor-
mation from the different views. For this purpose, one Cost Volume is created and then
refined to get a distribution over probabilities for the depth of each pixel.

Figure 4.6: Layout of the Inter-view Adaptive Aggregation Module to combine features
of different viewpoints.

Inter-view Adaptive Aggregation Module
After the homography transformation has been applied to align the feature maps across
different views, the Inter-view Adaptive Aggregation Module performs a critical step
in refining the stereo matching process. This module undertakes the reweighting of the
homography-transformed Cost Volumes. The purpose of this reweighting is to adaptively
adjust the contribution of different pixels based on their alignment and consistency
across views. By applying learned or predefined weights to these Cost Volumes, the
module effectively enhances the robustness and accuracy of depth estimation, focusing
on areas with high confidence and suppressing potential errors due to misalignments or
occlusions in the input images. This approach is essential for generating precise and
reliable disparity maps from the processed Cost Volumes.

Figure 4.7: The Resnet Block with Group Normalization.
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Resnet Block with Group Normalization
The Resnet Block with Group Normalization module is a refined architectural
component designed to optimize the performance of the network by incorporating two
fundamental innovations in deep learning: residual learning and group normalization,
both of which address specific challenges in training very deep networks. An overview
of the setup is given in figure 4.7

Residual learning is implemented to combat the vanishing gradient problem that typi-
cally occurs in deep networks. By introducing shortcut connections that bypass one or
more layers, the Resnet Block allows gradients to flow directly through these shortcuts,
making it easier to train deeper networks effectively. The shortcut essentially performs
identity mapping, and its output is added to the output of the layers being bypassed.
This setup not only preserves the integrity of the input data throughout the network but
also encourages feature reuse, which is beneficial for learning complex patterns without
increasing computational burden.

Group Normalization (GN) is another key feature of this module and represents a shift
from the conventional Batch Normalization (BN), which relies on batch size to compute
the mean and variance used for normalization. Instead, GN divides each feature channel
into groups and normalizes the features within each group based on their mean and vari-
ance. This method is particularly advantageous in situations where small batch sizes are
used, as it maintains consistent training and inference performance regardless of batch
size variations.

Together, these features enable the Resnet Block with Group Normalization to maintain
stable training dynamics, facilitate faster convergence, and improve the generalization of
the network. The inclusion of GN also simplifies the optimization landscape by reducing
dependency on batch size, making the module adaptable to different training environ-
ments and hardware configurations. This adaptability, coupled with the enhanced train-
ing efficiency provided by residual connections, makes this part an essential component
of the network’s ability to adapt to different amounts of viewing directions used.

Cost Volume Creation
As stated in equation 4.2, the reweighted Cr and warped Cw volumes are then combined
to form one volume Cg.

Cg =

kX

i=1

((Cr
i + 1) · Cw

i ) (4.2)

The general Cost Volume Cg now incorporates information from all viewpoints and has
dimensions of D ⇥ W ⇥ H referring to the number of possible depth hypothesis and
width and height of the image.

U-Net with Convolutional Long Short-Term Memory Module
The general Cost Volume Cg is further processed by a RNN-CNN hybrid network that
has a layout like U-Net with LSTM structure. This module is used to leverage spatial
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Figure 4.8: U-Net structure with LSTM cells.
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context information and to turn matching costs into a probability distribution of D depth

hypotheses [46]. This layout allows the network to capture visual information included in
the features while keeping memory of previous inputs. So after this step, in the original
network layout the output of the RNN-CNN module represents a probability distribution
over possible depth levels.

Convolutional LSTM Cell
The ConvLSTMCell combines convolutional and recurrent neural network functionali-
ties to process sequencial data effectively. It initializes with parameters that define the
spatial dimensions and the depth of input and output channels, incorporating convo-
lution operations within the LSTM’s gating mechanism. Specifically, it uses a single
convolution layer to simultaneously handle both the input tensor and the hidden state,
producing an output with four times the channels of the hidden dimension, correspond-
ing to the LSTM’s input, forget, output, and cell state update gates. These gates - each
activated by specific functions like sigmoid for the input, forget, and output gates, and
tanh for the cell update gate - allow the cell to decide how much new information to
accept, how much old information to retain, and how much of the cell state to output.

As the cost volume Cr already incorporates information from all viewpoints, the usage
of an LSTM module which stores information from one processing step to another seems
to be unintuitive first. But the way this part works explains the refinement character of
the module. Processing inside the LSTM cell is performed by sweeping through the cost
volume Cg constructed in the preliminary steps. So for each depth hypothesis inside
the Cost Volume, this module ensures spatial coherence for adjacent pixels which are
likely to be close in the spatial dimension of the real world. The processing inside the
Convolutional LSTM Cell can also help with occluded areas as it keeps track of feature
similarities from previous depth hypothesis, which allows this module to output rough
estimates of possible depth levels if there is a transition from matching features on one
side of an edge to the other side.

Finally, after feature extraction, processing and refinement, the refined Cost Volume Cr

is fed into a Softmax function to form the Probability Volume P . In the original network
layout, this volume would now be seen as probability distribution over the possible depth
hypothesis and classification, meaning the depth with highest probability is chosen as
final depth value for this pixel. Inside EMVSNet, this Probability Volume P marks the
input for the second part of the network, whose layout will be explained in the following
section 4.1.3.

4.1.3 Prediction of EDL parameters

The structure of the network until the creation of the Probability Volume P does not
incorporate the prediction of the parameters needed for EDL. The task of the second
part of the network, discussed in this section, is to predict the NiG parameters based
on the Probability Volume created. Appendix 8.2 provides a general graphical overview
over this part, which is further analyzed here.
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Volume creation and Interpolation
As a first step, there are three volumes of different resolution created based on the
Probability Volume P . These Volumes are denoted as V1..3 and have the same, one half
and one quarter the resolution of P . For interpolation, the trilinear type is used with
usage of aligned corners. This method ensures the volume to keep values at corners
and prevents shifts or distortions introduced by the interpolation process. As will be
described in the following, the Volumes V1..3 at different resolutions are used to extract
the parameters ↵, �, � and ⌫ of the NiG distribution. This ensures that smaller and
wider area around a pixel are incorporated into the prediction of the uncertainty of the
depth estimation.

Figure 4.10: Dense Residual Block of the proposed network.

Dense Residual Block
The Dense Residual Block, visualized in figure 4.10, feeds the different inputs into the
Hour Glass network with both dense and residual connections. This is done through
dense connections, where the feature maps from all preceding layers are concatenated as
input to each subsequent layer. Additionally, residual connections are incorporated to
facilitate gradient flow and improve training stability. The shortcut connections allow
the network to effectively learn residual functions with reference to the input, which
mitigates the vanishing gradient problem. By combining dense and residual connections,
the Block is able to receive complex patterns. Both Outputs of the Dense Residual Block
are fed into the Hours Glass network, marking the next step of the pipeline.

Hour Glass Network (UP&Down)
The Hours Glass network is shown in appendix section 8.1. It is build as identical network
structure but fed with different input feature maps. This type of network architecture is
designed for tasks requiring precise spatial understanding, like it is necessary if analyzing
the position of objects in 3D space. The encoder-decoder nature of this network part
allow it to combine low-level details with high-level semantics. Even more fine-graded
analysis of the content is possible through the different input sized of features fed into
the networks by also combing the results in the end.

Classification Layer
The Classification Layer (figure 4.11) is applied 3 times total and for the first time in
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Figure 4.11: Classification Layer 1-3, all equally setup to predict the desired four chanels.

the network’s flow outputs for each feature map the four parameters needed. Cost 0,
Out 1 and Out 2 are used as input, providing different resolution feature map to capture
information in multiple resolutions. The ConvBN3D Block (figure 4.12) just represents
3D Convolution followed by BN. The output of this layer is given as the logarithmic of ↵,

Figure 4.12: ConvBN3D Block made of 3D Convolution followed by Batch Normaliza-
tion.

�, � and ⌫ in different resolution. To be able to combine them, they are upsampled using
trilinear interpolation. The upsampled Cost Matrix is fed through a Softmax function
resulting in a probability distribution. To extract the parameter �, which represents the
mean of expected values, this distribution of probabilities is used for regression by the
predefined depth levels. The extracted probability distribution is also used to calculate
the remaining parameters by elementwise multiplication.

As a last step, these parameters, which are seen as logarithmic versions to ensure posi-
tivity, are combined.

Combine uncertainties
The combination of the parameters is done iteratively, resulting in a single set of param-
eters (↵i,�i, �i, ⌫i). The used fusion strategy has been adopted from MoNIG [84]. The
following equations describe one iteration of the fusion process:

↵ = ↵1 + ↵2 +
1

2

� = �1 + �2 +
1

2
�1(⌫1 � ⌫)2 +

1

2
�2(⌫2 � ⌫)2

� = �1 + �2

⌫ = (�1 + �2)
�1(�1⌫1 + �2⌫2)

Calculation of � is defined as not only the sum of �1 and �2, but also the variance

between the combined distribution and each individual distribution, as it provides insight

into aleatoric and epistemic uncertainties simultaneously [84]. The parameter ⌫ is also
weighted by �, which measures the confidence of the expectation.
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4.2 Uncertainty and Loss

With the network structure set up to predict a set of NiG distribution parameters
(↵,�, �, ⌫), it remains to define the formulae for epistemic and aleatoric uncertainty
as well as the Loss. In this regard, the proposed network structure has been influenced
by the finding of Meinert et al. [22].

Equation 4.3 shows the Default formulae used to describe aleatoric and epistemic un-
certainty. This set of formuae differs from the ones used in the original implementation
by Amini et al. [21], which has been introduced in section 2.4.4 and will be used and
described as Alternative set of equations, explained in the following section.

E[�2] =

r

� · (⌫ + 1)

⌫ · ↵
| {z }

aleatoric

, Var[µ] =
1p
⌫

| {z }

epistemic

(4.3)

With the arguments against the original representation of Amini et al. [21], using the
modified set of equations as default is a reasonable choice. But still it is shown that
practice often the quantification of uncertainty using the traditional methods is rather
good. The paper ows its title to this fact as the representation is being described as
unreasonable effective.

The introduced default expression to describe aleatoric uncertainty is identical to the
general shape parameter introduced in equation 2.24. Representation of the variance
has been adjusted so it only depends on the weighing parameter ⌫. This is an interest-
ing approach as it suggests that the overall shape of the Student t-distribution is the
primary factor for aleatoric uncertainty or, in other words, the aleatoric and epistemic
uncertainty follow a distribution of the same shape and the describing factor for the
epistemic uncertainty is only given by ⌫.

As stated in the paper by Meinert et al. [22], as Default Loss function for EMVSNet,
this function has been adopted as stated in equations 4.4 and 4.5.

�2i =
�i

⌫i
(4.4)

L0
i = log �2i + (1 + �⌫i)

(yi � �i)
2

�2i
(4.5)

The authors say the Alternative Loss function suffers from overparameterization, which
means it could be minimized independently of the data. This can lead to solutions that
not properly disentangle the uncertainties. Furthermore, separation between aleatoric
and epistemic uncertainty has been improved. The effect of the theoretical advantages
this choice makes will be explored in chapter 6.
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4.3 Adaptions

The proposed network structure is one way to handle the problem, but there is poten-
tial to adress serveral challenges by adjusting input data, network layout or processing
procedure. As already mentioned above, section 4.3.1 introduces the usage of an Al-
ternative set of formulae to describe aleatoric and epistemic uncertainty and the Loss
function. Section 4.3.2 deals with the already experimentally proven advantages usage
of the Exponential Linear Unit (ELU) function could provide. The final section 4.3.3
details the modifications introduced to integrate MCD into the network architecture,
enabling the subsequent experiments.

4.3.1 Alternative formulae and Loss

The initially published paper by Amini et al. [21] about EDL introduced the formulae 4.6
to quantify the prediction as well as aleatoric and epistemic uncertainty.

E[µ] = �
| {z }

prediction

, E[�2] =
�

↵� 1
| {z }

aleatoric

, Var[µ] =
�

⌫(↵� 1)
| {z }

epistemic

(4.6)

This set of formulae to describe aleatoric and epistemic uncertainty as well as the origi-
nally introduced Loss function as stated in equations 2.25-2.28 are used as Alternative
method in course of the experiments.

4.3.2 Two stage network

Li et al. [85] find that ROC AUC achieved by the EDL method is significantly lower than

that obtained by cross-entropy loss. Also they believe that EDL tends to be sensitive

to initialization and some hyper-parameters, where improper settings may lead to sig-

nificantly degraded AUC and unreliable uncertainty estimation. They suggest the usage
of a two-stage network setup to train an underlying network using Cross Entropy Loss
for superior learning of the prediction for the fundamental task and only estimating the
parameters for EDL in a second step.

In the paper, the authors also replace the ReLU function with the ELU function, which
leads to significant improvements in performance. The ReLU activation function (equa-
tion 4.7) is widely used in neural networks due to its computational efficiency.

ReLU(x) = max(0, x) (4.7)

However, in certain scenarios, its use can lead to the dying ReLU problem, where neurons
cease to learn and update their weights during training. This issue occurs when the
input to the ReLU function is consistently negative, resulting in a ReLU output of zero.
Consequently, the gradient through these neurons is zero, preventing any weight updates
during backpropagation.
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To address these limitations, the ELU activation function is employed, which can be
described by the following equation:

ELU(x) =

(

x if x � 0

↵(ex � 1) if x < 0
(4.8)

where ↵ is a hyperparameter that defines the value that ELU approaches as the input
becomes large and negative.

The ELU function in this case offers several advantages including a non-zero gradient
for negative inputs which mitigates the dying ReLU problem by allowing updates to the
neuron weights even when the input is negative. It is also smooth for all values of x,
aiding in the acceleration of the convergence of the learning process due to more pre-
dictable gradients throughout training. Additionally, it has been shown that networks
using ELU tend to generalize better on unseen data compared to those using ReLU,
likely because ELU can produce more robust features at each layer of a neural network.
These attributes make ELU particularly suitable for the two-stage network proposed
by Li et al. [85], where robust and reliable feature representation is crucial for effective
uncertainty estimation in the second stage of training.

For EMVSNet, the network layout given by AA-RMVSNet is used as first stage. The
following part is not explained in detail here as it has some flaws visible in the exper-
iments. But basically a setup of convolutional layers combination with the proposed
ELU function is used to determine the four parameters describing the NiG distribution.

4.3.3 Monte Carlo Dropout

To evaluate the EDL-based approach against a more traditional method using MCD, the
network layout of EMVSNet was modified. Specifically, to the evidential components of
the network two additional dropout layers were added. These 3D dropout layers were
integrated into the HourGlass and HourGlassUp modules, applied to the original out-
puts of these modules as described in Section 4.1.3. The input to these dropout layers
is of size C ⇥D⇥H ⇥W , where the PyTorch dropout layer zeros out entire channels of
the input with a probability p.

Maintaining the original network layout with the addition of dropout layers ensures
comparability between the approaches. In practical applications, when using MCD to
estimate uncertainty, it would typically be preferable to use Mean Squared Error (MSE)
and Mean Absolute Error (MAE) instead of the EDL loss function discussed in sec-
tion 4.2. However, in this case, retaining the proposed network layout without further
modification additionally provides valuable insights into the potential combination of
traditional methods with EDL.
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5 Experimental setup

This chapter presents a comprehensive overview of the experimental setup for EMVSNet.
The first section 5.1 explains the objectives of the analysis and conducted experiments.
The following section 5.2 provides detailed explanation of the general setup including
used hardware and dataset selection. The subsequent section 5.3 provides details about
the parameters used in training and presents metrics recorded while training. The last
section 5.4 explains details about metrics used.

5.1 Objectives of the analysis

The primary objective of the experiments conducted in chapter 6 is to evaluate whether
the prediction of uncertainty can inform the reliability of a given depth estimation. As
previously discussed, employing such a system could provide valuable insights and safety-
related recommendations in practical applications. Moreover, integrating these results
into 3D reconstruction can enhance reconstruction performance, particularly when the
system prioritizes predictions with low uncertainty. The detailed reconstruction pro-
cess for a complete 3D model is out of scope for this work, but if multiple contrary
depth hypothesis for one point in the real world exist, determine unreliable hypothesis
or weighting the individual calculations can tremendously increase performance and re-
liability [86].

The theoretical performance of such a determination system to filter unreliable predic-
tions is illustrated using Precision-Recall (PR) plots generated under various conditions.
Like explained in section 5.4, these plots are capable to show how well a system would
predict erroneous regions. Generated Receiver Operating Characteristic (ROC) curves
are are capable to determine a good balance between True Positive Rate (TPR) and
False Positive Rate (FPR) for this task.

Additionally, a significant area of interest lies in comparing this approach with other
methods for predicting uncertainty and assessing inter-dataset performance. In real-
world applications, domain shifts between training and inference data are inevitable.
Therefore, exploring the system’s performance in processing OOD data is of particular
importance.

Furthermore, a noteworthy aspect of EDL is the potentially minimal increase in runtime
and hardware requirements. Comparison aganinst the underlying network’s implemen-
tation in terms of run and training time is conducted.

In the course of chapter 6, it will be differentiated between aleatoric, epistemic and com-
bined uncertainty. The combined uncertainty in this case describes the sum of aleatoric
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and epistemic uncertainty. This unit of measurement has been added because there
might be cases where one or another type of uncertainty is mainly present. If the perfor-
mance of the prediction is then compared against the error, only for one of the methods
the prediction of an erroneous region would be true. But for combined uncertainty, it
might be the case that the prediction of such cases is enhanced.

5.2 General setup

The general network setup has been adapted from AA-RMVSNet, so it is implemented
in Python using PyTorch.

Hardware
The training procedure of the presented EMVSNet has been performed on a local ma-
chine with following hardware specifications:

• OS: Ubuntu 22.04.4 LTS

• CPU: Intel i7 12700K with 12 Cores/24 Threads

• RAM: 32 GB DDR4 3200 MHz

• GPU: 2x Nvidia RTX 3090 24GB

• CUDA: CUDA 11.7 / Driver version 535.171.04

As the system used is limited in PCIe lanes, the dual GPU setup is only able to use 8
PCIe lanes for each card. In addition, the power supply with maximum output of 850
watts required to apply a power limit to both Graphics Processing Units (GPUs) of 300
watt each to ensure stable operation. Even though this procedure limited performance
of the components, the hardware has been more than sufficient to train the network.

Datasets
As dataset for training, a subset of 84 scenes of the proposed DTU dataset is being
used. A full list of all scenes used is attached in the Appendix section 8.3. The remain-
ing scenes of the DTU dataset are then used for the test (24 scenes) and validation (18
scenes) set, also specified in the appendix. In general, the DTU dataset seems to be
the most broadly used in terms of MVS. Specifics of the dataset have already been pre-
sented in section 3.3, but with its characteristics as laboratory setup with high accuracy
and challenging lightning conditions it naturally appears as good option for a training
dataset.
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In addition - to provide the opportunity of cross dataset experiments showing the impact
of a domain transfer - the TnT dataset is used exclusively for testing purposes. From
this dataset, three scenes are utilized:

• Lighthouse

• M60

• Panther

With large scale outdoor scenes captured in the real world they mark a tremendous shift
in domain and the idea behind their utilization is a comparison in performance and the
feasibility of employment on other datasets.

5.3 Training

The training process involves some more parameters for configuration, this list provides
an overview of the most important parameters:

• Total Steps: ⇠ 240.000

• Duration: ⇠ 26 hours

• Training Scenes: 84

• Depth levels: 32

• Number of views: 3

• Batch size: 1

• Optimizer: Adaptive Moment Estimation (ADAM)

• Input image resolution: 128 x 160 pixel

• Total parameters: 4.494.115

• Learning Rate Scheduler: Cosine Annealing

• Learning Rate: 1⇥ 10�3 ! 2⇥ 10�6

• Weighting factor: � = 0.1

• Stopping criterion: Early stopping

The Learning Rate (LR) initially starts at its initial value and is decreased following the
Cosine Annealing Scheduler to the minimal value. This is done over the entire planned
maximum epochs. This means, other than usually with Cosine Annealing Scheduling,
the LR is not altered between high and low states but follows ⇡ of a cosine cycle, thus
going from high LR to low back to high. In some cases, this prevents getting stuck in
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local minima and additionally provides information in the later phase about the optimal
LR setting.

The parameters of the network are initialized like the default behaviour of PyTorch. The
initialization methods for different layers are summarized in the table 5.1. The weighting
factor has been adopted from literature, there have no experiments been performed to
optimize this parameter. Stopping has been done based on the test set Loss, with
stopping performed if decrease is below 0.2.

Training of both, EMVSNet and the proposed variation to incorporate MCD into the
network has been performed according to the hardware presented in section 5.2. Details
of the training results for EMVSNet incorporating MCD are presented below.

EMVSNet
In Appendix 8.8, graphs showing metrics in the network’s training process are presented.
Absolute error and loss as well as mean uncertainty predictions are captured and visual-
ized using a smoothed graph. It can be seen that over the term of the total steps, error
and loss decline as expected.

Additionally, error metrics are plotted, showing how many prediction are located out-
side a certain range of accepted error. These trends show a decrease within the training
process. While these trends still decline slightly after the training, appendix 8.9 shows
the same metrics for the testing set, with error and uncertainty graphs relatively stable
when training was stopped. Interestingly, the general trend in predicted uncertainties
tends to go upwards for all of these graphs, while it declines in the training set. This is
a behaviour worth further investigation in future work.

Appendix 8.10 show the results based on the full validation set. These graphs show
as well that training has been performed good enough to stop training. In general, to
further improve performance of the network, testing different parameters and optimizing
the training process would be recommended.

Layer Type Weights Biases

Convolutional Kaiming Uniform Zero

Linear Kaiming Uniform Zero

Batch Normalization One Zero

ConvLSTMCell Uniform Zero

Deformable Convolution Kaiming Uniform Zero

Group Normalization One Zero

Table 5.1: Used initialization methods for the parameters of different layers in EMVSNet.
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Alternative
The Alternative set of formulae with own Loss function has been trained using basically
the same parameters as shown for EMVSNet. Only difference is this factor:

• Weighting factor: � = 0.01

No experiments have been conducted to optimize this factor, instead the default recom-
mendation from the literature has been adopted.

The broad fluctuation in values when using the alternative method can be seen in these
graphs as well as in the testing results in appendix 8.12. The results for the validation
set are presented in appendix 8.13.

Monte Carlo Dropout
Training of the network incorporating additional MCD layers has been carried out using
the same parameters as well. The only change is that - obviously - the parameter count
is increased slightly. Additionally, for the dropout part, these parameters are applied:

• Dropout rate: 50%

• Dropout Input dimensions: 32⇥ 32⇥ 128⇥ 160

In appendix 8.14, the graphs for MCD network training are presented. No unusual
behaviour compared to the normal training method of EMVSNet can be explored here,
so incorporation of dropout layers seems not to hinder the training process.

5.4 Metrics

Chapter 6 uses different metrics, which are introduced here. These allow for comparison
of different compensation functions and determination of the model’s general perfor-
mance.

Mean Squared Error
Mean Squared Error (MSE) is a common metric used to evaluate the accuracy of a
predictive model. It calculates the average of the squares of the errors, where the error
is the difference between the predicted and actual values. MSE is defined as:

MSE =
1

n

nX

i=1

(yi � ŷi)
2

where yi is the actual value, ŷi is the predicted value, and n is the number of observations.
MSE is sensitive to large errors, making it useful for highlighting significant deviations
in predictions.
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Root Mean Squared Error
Root Mean Squared Error (RMSE) is the square root of the MSE. It provides an indi-
cation of the magnitude of the errors in the same units as the original data, making it
easier to interpret. RMSE is defined as:

RMSE =
p
MSE =

v
u
u
t

1

n

nX

i=1

(yi � ŷi)2

RMSE is particularly useful when comparing the performance of different models on the
same dataset.

Mean Absolute Error
Mean Absolute Error (MAE) measures the average magnitude of the errors in a set of
predictions, without considering their direction. It is calculated as the average of the
absolute differences between the predicted and actual values. MAE is defined as:

MAE =
1

n

nX

i=1

|yi � ŷi|

MAE is less sensitive to outliers compared to MSE, providing a more robust measure of
model accuracy.

Coefficient of Determination (R²)
The Coefficient of Determination (R2) is a statistical measure that indicates how well
the regression predictions approximate the real data points. It provides an indication
of the proportion of the variance in the dependent variable that is predictable from the
independent variable(s). R2 is defined as:

R2 = 1�
Pn

i=1(yi � ŷi)
2

Pn
i=1(yi � ȳ)2

where yi is the actual value, ŷi is the predicted value, ȳ is the mean of the actual values,
and n is the number of observations. An R2 value closer to 1 indicates a better fit of the
model to the data.

ROC and PR curve
ROC curve and PR curve provide excellent measurements to analyze the performance of
the model’s uncertainty prediction. To classify the depth and uncertainty predictions,
two thresholds have to be applied:

• Uncertainty Threshold (T u): This is the threshold below which predictions are
considered sufficiently certain. It delineates the level of uncertainty acceptable for
the model to classify its predictions as reliable.
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• Error Threshold (T e): This threshold defines the maximum permissible error
between the predicted and actual values, beyond which predictions are considered
inaccurate.

These thresholds are then applied to categorize each pixel based on its depth and un-
certainty estimations:

• True Positives (TP): Cases where the error between the predicted depth and the
actual depth is below the Error Threshold (T e), and the associated uncertainty is
below the Uncertainty Threshold (T u), signifying high confidence in the accurate
prediction.

TP = {Error  T e ^Uncertainty  T u}

• False Positives (FP): Cases where the error exceeds the Error Threshold (T e),
but the associated uncertainty is below the Uncertainty Threshold (T u), indicating
incorrect confidence in an inaccurate prediction.

FP = {Error > T e ^Uncertainty  T u}

• True Negatives (TN): Cases where both the error between the predicted depth
and the actual depth exceeds the Error Threshold (T e) and the associated un-
certainty is above the Uncertainty Threshold (T u), correctly indicating a lack of
confidence in inaccurate predictions.

TN = {Error > T e ^Uncertainty > T u}

• False Negatives (FN): Cases where the error exceeds the Error Threshold (T e)
and the uncertainty is below the Uncertainty Threshold (T u), indicating a failure
to accurately predict within the acceptable error range despite high confidence.

FN = {Error > T e ^Uncertainty  T u}

For both curves, from the defined values above there are key figures which must be
specified and calculated:

• Positive Predictive Value (Precision): P = TP
TP+FP

• True Positive Rate (Recall): TPR = TP
TP+FN

• False Positive Rate (Specificity): FPR = FP
FP+TN

As the ROC curve and the PR curve are used for classification tasks, their representation
of predictive performance aligns with the main interest of the measurements conducted.
Classification allows for a decision weather a given depth estimation is trustworthy. If
further usage of the data produced includes weighted incorporation of the results, for
example used in the further 3D reconstruction pipeline, performance potentially might
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be even better than if strict thresholds are applied.

The ROC curve plots the TPR against the FPR across various threshold settings. The
TPR measures the model’s ability to accurately predict the depth while assigning a high
certainty to these correct predictions. Conversely, the FPR quantifies the proportion of
instances where predictions with significant errors are mistakenly classified as certain.

The PR curve focuses on the relationship between Positive Predictive Value (PPV)
and TPR, which is particularly important in situations where classes are imbalanced.
Precision is calculated as the proportion of correct positive identifications among all
positive predictions made, measuring the accuracy with respect to the certainty. This
curve becomes especially valuable when the cost of false positives is substantial, or when
the positive class carries more significance than the negative class.

The PR Curve, using thresholds for error and uncertainty, categorizes predictions to
assess if the model can reliably indicate when it is likely to be correct or incorrect. This
method is essential for operational settings where decisions based on model predictions
require high reliability. The PR curve’s limitation in only evaluating the arrangement of
errors, without indicating the types of error distributions, suggests that while it can show
how well the model separates trustworthy predictions from uncertain ones, it doesn’t re-
veal the underlying error characteristics or the exact nature of the uncertainties involved.

Accuracy and F1 Score

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Another interesting measurement is the predictive performance based on different thresh-
olds for uncertainty. Summarily to the definition above, thresholds T u for uncertainty
and T e for the prediction error are chosen to classify the predictions. Then, accuracy
(equation 5.1) and F1-Score (equation 5.2) are calculated based on different values for
T u.

F1-Score = 2 ·
Precision⇥ Recall

Precision + Recall
(5.2)

The F1-Score can also visually be seen in PR curves, marking the point where precision
and recall curve cross.

Histogram
The Histogram can be seen as an indicator for the direct relationship between uncer-
tainty and error. If the histogram shows a strong positive correlation, it suggests that
the model’s uncertainty estimates are aligned with actual prediction errors, validating
the model’s ability to estimate its own reliability accurately. This tool is particularly
useful for visualizing the spread and central tendency of errors as they relate to uncer-
tainty, providing insights into whether the model consistently recognizes more difficult
or uncertain cases.
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Calibration Plot
The Calibration Plot offers an analytical view of how effectively the model quantifies its
certainty. By plotting the error normalized by the standard deviation against predicted
uncertainty, one can assess the calibration of uncertainty: whether the model’s confidence
in its predictions is justified based on actual outcomes. A well-calibrated model will show
that higher uncertainties correlate with higher errors, indicating an accurate awareness
of its prediction limits. This plot is helpful for evaluating the model’s reliability across
different levels of confidence and ensuring that it does not systematically overestimate
or underestimate its capabilities.
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6 Experiments and Results

The experiments outlined in this chapter assess various aspects of EMVSNet’s per-
formance. Both qualitative and quantitative analysis are conducted, utilizing diverse
datasets and evaluating the impact of different formulae.

Within the first section 6.1, the performance of depth and uncertainty prediction using
different metrics is analyzed. Section 6.2 extends this analysis with visual evaluation,
which can play an important role in performance measurement. Section 6.3 presents
experiments that are conducted using different amount of viewpoints to gather their
influence. In in section 6.4, data from the TnT dataset is used to evaluate inter-dataset
performance and specific characteristics of the uncertainty prediction with data unre-
lated to the training set. The following section 6.5 compares the Default EMVSNet
approach to the Alternative set of formulae, presented in section 4.3.1. The subsequent
section 6.6 uses MCD to compare the prediction quality of the EDL based approach
against. This adaption of the network has been introduced in section 4.3.3. Perfor-
mance of another adaption of the original network layout is shown in section 6.7, which
has been introduced in section 4.3.2.

6.1 General performance

To analyze the network’s performance of uncertainty prediction, as first intention, it is
rational for a large set of samples, which is present in the form of many pixels per image,
to connect uncertainty and error. Statistically, for many samples, higher uncertainty
should lead to higher error. This assumption yields to some interesting performance
indicators to consider:

• Depth estimation: To evaluate the general performance of the network, it is
crucial to compare it against the network without the EDL part. This is done by
comparing the DTU test set metrics against AA-RMVSNet.

• Heatmap: Uncertainty plotted against the real Error. Over many samples, a
positive correlation can be assumed. Additionally, it is interesting to explore the
nature of this relationship, whether it is quadratic, linear, or another form, to
better understand how uncertainty and error are interconnected.

• Calibration Plot: Error divided by Standard Deviation, plotted against the
predicted uncertainty. This plot can be used to determine weather bigger variance
in the predictions corresponds to higher predicted uncertainty. This way it can be
determined if the model is overconfident or under confident in its predictions.
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Model Views D Loss Time [ms] MAE [mm] 2mm # 4mm # 8mm # 16mm # 32mm #
EMVSNet 3 32 17.68 169 7.37mm 44.45% 23.39% 11.68% 6.49% 3.93%

AA-RMVSNet 3 32 1.09 132 20.25mm 79.88% 60.51% 29.94% 15.30% 11.57%
AA-RMVSNet 7 128 1.69 440 5.90mm 39.55% 17.89% 8.77% 5.51% 3.84%

Table 6.1: Performance comparison of EMVSNet and AA-RMVSNet on the DTU test
set, showing the MAE and percentage of predictions outside of various error
thresholds. Results are presented for different numbers of views and disparity
levels D.

• PR Curve: Two thresholds T e and T u for error and uncertainty are applied.
These thresholds categorize into the classes correct or incorrect prediction for T e

and trustworthy and uncertain prediction for T u. This curve shows if the model
can be used to determine if a prediction is trustworthy, so if the model can be
used effectively. As limitation, this curve only evaluates the arrangement of error
distributions — how errors are sorted, yet it does not specify the assumed types
of these distributions.

These tools to measure the network’s performance are presented in regard of theoretical
meaningfulness as well as the results found.

The quantitative performance of the proposed network in this section is mostly analyzed
in relation to the real error measured. Without ground truth data for uncertainty quan-
tification, these experiments should express how uncertainty prediction could improve
reliability of estimations.

Comparison against AA-RMVSNet
Table 6.1 presents the performance results on the DTU test set for both AA-RMVSNet
and EMVSNet. The testing parameters for EMVSNet were carefully selected to align
with its training parameters, as well as the default optimized testing parameters reported
by Wei et al. [46].

It is noteworthy that the EMVSNet model, despite utilizing only 32 disparity levels D
and 3 views, demonstrates performance comparable to AA-RMVSNet, which operates
with D = 128 and 7 views. When AA-RMVSNet is evaluated on the test set with only 3
views and D = 32, its performance is significantly lower than that of EMVSNet. Overall,
this comparison indicates that the two networks perform similarly, with EMVSNet likely
surpassing AA-RMVSNet if their parameters were fully aligned. Further research could
potentially confirm this finding.

While AA-RMVSNet demonstrates a significant advantage in inference time compared to
the more complex EMVSNet, an even more notable difference emerges during training.
Table 6.2 presents the average time required to train a single sample using a batch size of
one. In this context, the more intricate architecture of EMVSNet reveals its limitations,
as it leads to increased training time.
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Figure 6.1: Visualization for 50 bins of uncertainty predictions versus actual error as
Heatmap. The top 10% of errors and uncertainty values are removed to
filter outliers and improve visibility in the relevant region. The red line
is indicating linear regression. The colored scale indicates the amount of
samples in the associated bin.
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Model Mean Time

AA-RMVSNet 248 ms

EMVSNet 721 ms

Table 6.2: Average training time per sample for AA-RMVSNet and EMVSNet, illus-
trating the computational demands of each model. EMVSNet requires signif-
icantly more time to train due to its complex architecture.

Heatmap
The heatmap of uncertainty against error is shown in figure 6.1. This plot also includes
the red linear regression line which shows positive correlation between error and uncer-
tainty. The heatmap shows how in general the low error areas are predominant and in
comparison to the Calibration plot, the variation in predicted uncertainty for certain
errors is clearly visible.

To further analyze how the error is connected to the uncertainty, cubic regression is com-
pared to the linear regression to see which better suites the data. Table 6.3 compares the

Type Metric Linear [mm] Cubic [mm]

Aleatoric

MSE 23.29 22.96
RMSE 4.83 4.79
MAE 2.05 2.04
R2 0.35 0.36

Epistemic

MSE 30.54 29.85
RMSE 5.53 5.46
MAE 2.30 2.18
R2 0.15 0.17

Table 6.3: Comparison of Linear and Cubic Regression using different metrics. MSE,
RMSE and MAE are given in millimeters.

performance of linear and cubic regression models using MSE, RMSE, MAE, and R².
The results indicate that there is not a significant difference between these regression
types, although cubic regression appears to provide a slightly better fit.

The R² score can also indicate weather homoscedastic or heteroscedastic uncertainty is
more predominant, as a higher score would indicate more variability with varying input
data. The value of 0.35 indicates a fair mix of both types, more leaning towards the
homoscedastic type of uncertainty.

Calibration Plot
The Calibration plot in figure 6.2 demonstrates an almost linear correlation between
uncertainty and error. Additionally, figure 6.3 illustrates the distribution of predicted
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uncertainty values across the three scenes. To mitigate the impact of outliers, the high-
est and lowest two percent of predicted uncertainty values have been excluded. It is
observed that in these extreme cases, the correlation between predicted uncertainty and
MAE worsens.

A possible explanation for this deviation in extreme cases could be that while high un-
certainty is correctly predicted in certain areas, the prediction is more blurred compared
to the actual regions of high error. In this scenario, the general concept of increased
uncertainty is accurate, but the exact location is not, leading to a reduced correlation
due to the pixel-by-pixel comparison method, where smearing of predictions occurs.

Despite the excellent correlation shown in the calibration plot, a considerable variation
in values can be identified when considering the Heatmap results. However, it is impor-
tant to note that the Calibration plot utilizes more data points, as the Heatmap excludes
10 percent of the values. This exclusion does not negatively affect performance, as a
positive correlation is maintained across almost the entire range of predicted uncertainty
values, applicable to both types of uncertainty.

PR Curve
The PR curves for all three test scenes are visualized for each type of uncertainty in ap-
pendix 8.5. To fully understand the performance metrics and their impact on real-world
data, it is crucial to consider the distribution of errors, as presented in appendix 8.4.

In the context of EMVSNet, the most beneficial application might be identifying regions
with relatively high errors, which are expected to be the most critical concerning safety.
The error distribution reveals that, at a threshold of 6 mm, over 80 percent of inliers
are present across all scenes. Conversely, a strict threshold of 2 mm excludes up to half
of the predictions, resulting in a hard separation. This effect is also reflected in the
performance, with Equal Error Rate (EER) values increasing at higher thresholds.

Considering the error distribution, the relatively mediocre performance of EMVSNet in
scene one at a 2 mm threshold becomes understandable. Across all scenes, it is evident
that a threshold T e of 6 mm yields F1-Scores above 90%, demonstrating the model’s
excellent performance. Generally, epistemic uncertainty prediction appears to be less ef-
fective compared to aleatoric uncertainty. However, using a combined method mitigates
the weaknesses of both types and enhances overall performance.

In some instances, EMVSNet exhibits fluctuations in precision, where the performance
is inconsistent. This often occurs due to a small number of samples in specific regions,
causing individual samples to have a significant impact on the overall graph.
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ROC Curve
The ROC curves, illustrated in appendix 8.6 for each scene, demonstrate that aleatoric
uncertainty prediction consistently yields the best results. As with the PR curves, in-
creasing the threshold T e improves model performance.

Although the 2 mm threshold excludes nearly 50% of predictions, the model still per-
forms significantly better than random guessing. At higher thresholds, the Area under
the curve (AUC) approaches 0.9, indicating excellent performance.

The ROC curves further illustrate the model’s strong ability to identify erroneous depth
estimates. Once again, epistemic uncertainty prediction underperforms compared to the
aleatoric type.

The steep rise in the ROC curve, achieving a high True Positive Rate (TPR) with a low
False Positive Rate (FPR), suggests that an optimal threshold can be found to accu-
rately identify regions with high error. This behavior is particularly notable at 4 mm
and 6 mm T e thresholds.

Conclusion
The comparison with the underlying AA-RMVSNet model reveals comparable results,
with EMVSNet even surpassing its performance in direct comparison. Further experi-
ments would be beneficial at this stage, particularly considering that the more complex
network structure of EMVSNet may contribute to its enhanced performance. However,
to fully explore this potential, it would be necessary to experiment with different dis-
parity levels D.

Both, the Heatmap and the Calibration plot, demonstrate a correlation between mea-
sured error and expected uncertainty. The Heatmap reveals a broader variation in values,
which aligns with theoretical expectations since the correlation between uncertainty and
error is of a statistical nature. Higher uncertainty indicates a higher likelihood of error,
but it does not guarantee high error for every individual sample. Thus, the Correlation
plot provides a reliable measure of average behavior across many samples, and it shows
excellent correlation.

The PR and ROC curves further highlight how the classification of error and uncertainty
can be used to filter out unreliable predictions. With F1-Scores exceeding 80%, and often
reaching 90% for higher error thresholds, the model demonstrates excellent performance.
Although epistemic uncertainty prediction often lags behind aleatoric uncertainty, com-
bining both approaches proves effective, enhancing performance by addressing cases with
predominant epistemic uncertainty.
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Figure 6.2: Calibration plot for aleatoric and epistemic uncertainty: To remove outliers,
only values within the 2nd to 98th percentiles were used.
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Figure 6.3: Distribution of predicted uncertainty values for all three scenes.
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Figure 6.4: Visualizations for Scan 15 include the reference image, prediction error, and
aleatoric and epistemic uncertainties with 1% clipping. The relative uncer-
tainty measurements use a color scale, with deep red representing the highest
uncertainty and deep blue the lowest, tailored to the specific method. The
prediction error is similarly scaled, reflecting actual errors in millimeters.
In the Prediction Error visualization, black regions indicate masked areas
without ground truth, where error calculation isn’t possible.
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6.2 Visual evaluation

In addition to the qualitative results, the qualitative analysis is another major point
that should not be overlooked. Visually identifying reasons for parts of the image that
exhibit high uncertainty of either type might explain certain shortcomings found in
the quantitative analysis. Additionally, it can be checked if parts of the image that
theoretically should tend to higher uncertainty, for example non lambertian surfaces,
really show higher uncertainty predictions.

The results presented for three scenes in figures 6.4-6.6 show uncertainty for EMVSNet,
separated for the aleatoric and epistemic type.

General Analysis
Across all images, the outer borders where depth and material change can be clearly
identified as regions with increased prediction error. Generally, the background is ob-
served as the part of the image with the highest uncertainty. Since ground truth values
for depth — and consequently for error - are only available for areas where objects are
present, it is not possible to directly compare depth estimation in the background regions
to uncertainty prediction.

However, the notable overlap between areas of high uncertainty and the masked back-
ground areas suggests a potential new metric for performance evaluation: whether the
masked background areas could be predicted using uncertainty. Due to the limited scope
of this thesis, this investigation is included in the outlook for future work.

Scan 15
In the first scene, it can be recognized that the change in depth at window projections
leads to a higher error. The same can be said about the complex structure of bushes in
front of the house. Especially pronounced, the tip of the bay window has high epistemic
uncertainty. Remarkable is also the region in the top left corner, where some spots of
high prediction error can be found. This area is also one of the few with masking applied
and there higher uncertainty in the masked region can be found. The masking in the
bottom right corner can be seen in all uncertainty predictions as well.

Overall, the aleatoric and epistemic uncertainty prediction do align well with measured
error. The predicted epistemic uncertainty tends to more extreme values, so clipping
has been performed in more areas.
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Figure 6.5: Visualizations for Scan 48 include the reference image, prediction error, and
aleatoric and epistemic uncertainties with 1% clipping. The relative uncer-
tainty measurements use a color scale, with deep red representing the highest
uncertainty and deep blue the lowest, tailored to the specific method. The
prediction error is similarly scaled, reflecting actual errors in millimeters.
In the Prediction Error visualization, black regions indicate masked areas
without ground truth, where error calculation isn’t possible.
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Figure 6.6: Visualizations for Scan 32 include the reference image, prediction error, and
aleatoric and epistemic uncertainties with 1% clipping. The relative uncer-
tainty measurements use a color scale, with deep red representing the highest
uncertainty and deep blue the lowest, tailored to the specific method. The
prediction error is similarly scaled, reflecting actual errors in millimeters.
In the Prediction Error visualization, black regions indicate masked areas
without ground truth, where error calculation isn’t possible.
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Scan 48
This scene again shows clear separation between the objects and background with epis-
temic uncertainty. In these images, a grid structure can be recognized. As strong
suggestion this could be a phenomena known as checkerboard artifact. This can occur
if up sampling is done using deconvolution. One strategy to overcome the issue would
be to use bilinear interpolation followed by convolution, but as results are not to badly
influenced here, this is reserved for the outlook.

Again, area of highest uncertainty matches well with the area of biggest error in case of
aleatoric uncertainty where the area between the pots is most pronounced. What can
further be seen in this example is higher uncertainty in the bright white areas on top
of the pot due to unambiguouity and possibly non lambertian surfaces. In general, the
epistemic type of uncertainty is much more pronounced in this example, although the
ambiguity in white areas would indicate aleatoric uncertainty.

Scan 32
This scene again shows correlation of background and uncertainty as well as checkerboard
artifacts. As area of high error the in part of the source images occluded part of the can
behind the bag can be identified. For EMVSNet, variations in uncertainty prediction in
the overexposed areas of the bag can be identified. These areas of increased uncertainty
would be expected as there is no real visual information. Appendix 8.7 shows the images
used for this scene. Potentially, increased uncertainty might also be introduced due to
changes in lighting, but in this case, these is overexposure visible in all the frames. So
most likely, the increased uncertainty is due to the visual ambiguity in this area.

With EMVSNet, in general edges can be identified as areas of higher uncertainty com-
pared to those areas located on the object. This behaviour is to be expected as changing
viewpoints especially influence the object’s border by revealing or masking part of the
object.

Interestingly, for the proposed scene 32 (appendix 8.7), it can clearly be identified that
the increased movement of the bag in relation to the camera’s position leads to higher
uncertainty than the can hidden behind it not changing the position as much. It is also
remarkable that the hidden can does not lead to higher uncertainty in this area, the
right border of the can is visible in both aleatoric and epistemic plots but it could be
anticipated that also part of the bag would be influenced by the changing features in
this area. This marks as an indicator that the model was trained well on ignoring the
features presented by a now hidden viewpoint.

The second image has the stripes printed on the vases slightly transferred to the pre-
dicted epistemic uncertainty. Why this might happen is an open question. What can
nicely be identified is both, reduced uncertainty as well as reduced error on the printed
bottom of the vases. Also, the over saturated area is exposed in both plots.

Including the visual abnormalities regarding background, masked areas and checkerboard
artifacts, visual identification of areas with higher uncertainty seems to be well explained
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in almost all cases. As the theoretical consideration suggests, areas of uniformity, chang-
ing depth and background can be identified as high uncertain areas. Especially with the
clear separation between background and object, real world application of this system
for example for autonomous driving might be able to increase safety.

6.3 Amount of viewpoints

Incorporating more viewpoints on one hand increases computational power needed to
process and combine the information. On the other hand, it might result in better results
as more information is available and ambiguities from a certain perspective might be
resolved through more information from another viewpoint. Not in every case anyhow
must more information lead to better results - conflicting information from shadows or
reflections could also result in decreased model performance.

Another interesting aspect is the given training procedure of the network described
in chapter 5. Weights are trained using one amount of viewpoints, so altering them
might influence the interpretation of the combined Cost Volume from individual features
extracted. Although a shared backbone is used and combination of the results from each
viewpoints makes it unlikely this will influence the network performance negatively, this
is a fact worth checking.

For this test, one reference frame is kept while 1, 2, 4, 8 or 19 additional source frames
are added. The prediction error and in each type of uncertainty values are plotted as
percentile curves. This provides the opportunity to compare prediction accuracy as well
as overall uncertainty for the different amounts of viewpoints.

Table 6.4 shows performance metrics for five experimental setups ranging from 2-20
viewpoints for EMVSNet. Best performance in this experiment is given when using 5
viewpoints, although the network was trained on less. In general, using uneven amounts
of viewpoints enables the usage of equal amount of previous and following images in
DTU dataset with the reference frame located in the middle.

In figures 6.7-6.9, for every amount of viewpoints precision and recall for all types of

Views Test Loss Time MAE [mm] # 2mm # 4mm # 8mm # 16mm # 32mm #
2 8.14 0.181 11.73 55.6% 33.5% 18.9% 11.7% 7.4%
3 5.88 0.199 7.37 44.5% 23.4% 11.7% 6.5% 3.9%
5 5.54 0.218 6.79 41.2% 21.2% 10.3% 5.7% 3.6%
9 5.71 0.317 7.10 42.5% 21.4% 10.4% 5.9% 3.9%
20 5.90 0.368 7.45 44.3% 22.1% 10.8% 6.3% 4.2%

Table 6.4: Mean performance metrics for different amounts of viewpoints. The percent-
age values inside the right columns indicate how many depth estimations
exceed an error of the given range in millimeter.
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Figure 6.7: Comparison of Precision-Recall curves for aleatoric uncertainty. Different
amounts of viewing directions used are shown, the error threshold T e has
been set to 4mm.
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Figure 6.8: Comparison of Precision-Recall curves for epistemic uncertainty. Different
amounts of viewing directions used are shown, the error threshold T e has
been set to 4mm.
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Figure 6.9: Comparison of Precision-Recall curves for the combined aleatoric and epis-
temic uncertainty. Different amounts of viewing directions used are shown,
the error threshold T e has been set to 4mm.
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uncertainty including combined uncertainty is visualized. In this case a fixed, balanced
threshold for the error of 4 mm is used. As direct performance comparison it can be
recognized that more viewpoints lead to better performance with only marginal im-
provements after inclusion of 5 viewpoints. In case of the aleatoric uncertainty its also
interesting that the chosen 90 percent of uncertainty values stretch to much higher values
than in the other cases.

Overall, more viewpoints seem to improve depth and uncertainty estimation. It can
be seen that even though the network was trained on fewer viewpoints, performance
increases with increased amount.

6.4 Inter-dataset performance

The practice of utilizing models trained on a specific dataset, or type of data, and ap-
plying them to another dataset with a significant domain gap often presents challenges.
This is particularly pronounced in applications where domain-specific features signifi-
cantly influence model performance. To investigate the general ability of a model not
only to perform depth estimation, but also to handle uncertainty in measurements, the
model trained on the DTU dataset is applied to test scenes from TnT. The test scenes
selected from TnT for this purpose are:

• Lighthouse

• M60

• Panther

Utilizing weights optimized for the DTU dataset in applications involving TnT data
provides a valuable opportunity to assess the generalizability of the trained model across
different domains. Notably, the DTU dataset predominantly features indoor, artificially
illuminated scenes with small objects, whereas the TnT dataset comprises larger, outdoor
scenes that include buildings and tanks, illustrating a substantial domain shift.

Theoretical Considerations
Theoretically, one might anticipate increased epistemic uncertainty when a model trained
on one domain is applied to another distinctly different one. This arises due to the
model’s lack of knowledge about new domain features, which were not present during
training. Conversely, aleatoric uncertainty, which is inherent to the observational data
regardless of the model, might be lower in the TnT dataset. This is because the chal-
lenging lighting conditions often found in the DTU dataset are absent, and the TnT
dataset benefits from richer textural information and more diverse surface interactions.
Additionally, the different scales and object complexities between the two datasets might
further exacerbate the epistemic uncertainty. For example, models trained on small, de-
tailed objects might struggle with the scale and simplicity of large structures or vice
versa.
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Figure 6.10: Visualization for the Lighthouse scene (image 48) from the TnT dataset.
The reference image, estimated depth, and plots depicting relative areas of
aleatoric and epistemic uncertainty are shown. Red represents high uncer-
tainty, blue indicates low uncertainty.
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Figure 6.11: Visualization for the M60 scene (image 4) from the TnT dataset. The refer-
ence image, estimated depth, and plots depicting relative areas of aleatoric
and epistemic uncertainty are shown. Red represents high uncertainty, blue
indicates low uncertainty.
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Figure 6.12: Visualization for the Panther scene (image 27) from the TnT dataset. The
reference image, estimated depth, and plots depicting relative areas of
aleatoric and epistemic uncertainty are shown. Red represents high un-
certainty, blue indicates low uncertainty.
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Specific experiments
The performance of the proposed neural network on this dataset is evaluated using these
metrics:

• Visually comparing estimated depth and uncertainty

• Mean uncertainty

To proof the increased epistemic uncertainty due to the domain shift, mean uncertainty
for three scenes from each dataset is compared. As the TnT dataset does not provide
masks to separate the objects in question from the background, the comparison is done
using the whole scene. This is reasonable as it can be expected that also background
information in DTU is more common and known than the outdoor scenery marking the
background in TnT.

Testing the inter-dataset performance based on data from the TnT dataset is done using
the following settings:

• Viewpoints: 5

• Depth levels: 32

• Resolution: 544⇥1024

According to the experiment in section 6.3, the chosen number of viewpoints was al-
ready very good performing while limiting the need for computational resources. The
increased resolution of the TnT dataset leads to increased memory consumption and
without labour intensive fine-tuning of GPU memory, allocation of 24 GB Video Ran-
dom Access Memory (VRAM) is only sufficient for 5 simultaneous viewpoints. Analyzing
the influence of the number of viewpoints on inter-dataset performance has been left for
future work at this point.

Visual comparison
Figures 6.10-6.12 display three scenes with the predicted depth and associated uncer-
tainty. Due to the lack of integration of ground truth data in this work, quantitative
analysis of the peculiarities mentioned here is not available. But truly remarkable is
the bad depth prediction performance in regions where sky is visible with depth predic-
tions on the complete false end of the spectrum. These problems especially occur in the
Lighthouse scene widely spread, and this scene also is the one where aleatoric uncertainty
prediction worst fits to the obviously visible error. In the M60 and Panther scene the
areas of increased aleatoric uncertainty align remarkably well with areas of high error.
Even though the first scene has the sky as problematic area, visually the object should
be extractable from the background using the aleatoric uncertainty estimation.

The predicted epistemic uncertainty visually almost presents itself like an edge detec-
tion algorithm. Increased uncertainty at object’s edges on the other hand is plausible,
so uncertainty prediction seem to align to problematic areas.
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While depth prediction remarkably struggles especially with the outdoor scene in this
test, uncertainty prediction seem to be able to identify the areas of increased error al-
though there is the domain shift happening. While, again, perfect pixel matching is not
given, broader areas of increased uncertainty do align with high error and should be able
to identify erroneous regions.

Mean epistemic uncertainty
Table 6.5 shows the mean predicted uncertainty values for the three tested TnT scenes.
As calculation of uncertainty is done using the probability distribution over the depth
level bins and absolute values are extracted later using the depth rage, these values are
directly comparable against results from DTU dataset.

Scene Aleatoric Epistemic

Lighthouse (TnT) 35.1 45.6
M60 (TnT) 22.9 44.3
Panther (TnT) 21.8 43.9

Scene 1 (DTU) 3.44 37.65
Scene 2 (DTU) 5.10 39.20
Scene 3 (DTU) 2.97 33.41

Table 6.5: Mean values of aleatoric and epistemic uncertainties for different scenes.
Lighthouse, M60, and Panther are from the TnT dataset, while Scene 1,
Scene 2, and Scene 3 are from the DTU dataset. All values are given on the
scale of the DTU dataset and are comparable against each other.

Compared to the predicted uncertainty values for the three scenes from the DTU dataset,
using the three TnT scenes results in 20% higher mean of epistemic uncertainty values.
As discussed before, this is expected behaviour and shows the shift in dataset.

Unexpectedly the values of aleatoric uncertainty are an order of magnitude higher with
the OOD dataset, which is not to be expected by itself. One explanation might be the
truly visible difference in appearance of scenes in TnT. The broader field of view with
big objects includes small details not found in the DTU dataset. Here, in general objects
are more uniform and visual features seem not to change that much.

Further investigation into this behaviour might be necessary to explore the source of this
behaviour. One way to do so could be the analysis of activation inside the evidential part
of the network to see which parts of the image are essential for prediction of aleatoric
uncertainty with the domain-shifted dataset. Another factor might be the inclusion of
background, so using a OOD dataset with proper masks might reveal problems in that
regard.

Strategies for Enhancing Model Adaptability
There are multiple ways to further refine and improve the comparison process only
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scatched at this point. Comparing the performance on high-detail scenes like ’Light-
house’ against the less textured scenes such as ’Panther’ could reveal how well the model
handles different levels of surface complexity and lighting conditions. Additionally, in-
troducing perturbations such as artificial noise or varying light conditions in the test
scenes could help in understanding the robustness of the model against real-world envi-
ronmental variations.

Further testing could involve cross-dataset validation where the model is not only tested
on TnT but also on other datasets that represent different challenges, such as varying
degrees of motion blur or different weather conditions. This would help in identify-
ing the specific limitations and strengths of the model across a broader spectrum of
scenarios. Moreover, it would be worthwhile to consider the impact of training data
diversity—integrating data from multiple sources during training could potentially en-
hance model robustness. The exploration of transfer learning and fine-tuning the model
with minimal data from the target domain (such as TnT) could also provide insights
into the practicality of deploying such a model in dynamic real-world applications where
the domain conditions are continually changing.

6.5 Comparison of formulas

The experiments conducted in this section are designed to show differences between both
formulae 4.3 and 4.6. These experiments should provide the opportunity to account for
theoretical differences of these approaches in real world example and to show which is
better suited, with respect to the specific task, to describe the types of uncertainty.

The difference in mathematical representation of uncertainty and the critique of Meinert
et al. [22] about the original paper provide an interesting opportunity to compare both
approaches. Specifically, as already stated in the paper, for many cases the actual
performance of uncertainty prediction is alright using the approach of Amini et al. [21].

Uncertainty for three scenes
To measure the effects of various input data as well as the feasibility of the proposed
network structure, the uncertainty predictions for three scenes for each dataset are an-
alyzed. This is done as comparison between both formulas by:

• Comparing the mean of both aleatoric and epistemic uncertainty for three scenes.

• Comparing the relative difference in uncertainty prediction between three scenes.

• Comparing the predicted uncertainties as density plot over the distribution of
values.

• Visualize all of the expected uncertainty for three scenes as heatmap showing how
often a certain range of uncertainty is predicted for a certain error.
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Figure 6.13: Density function of uncertainty values for the 3 scenes distinguishing be-
tween the two formulas with masking applied. Top 10 percent outliers are
removed.
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Figure 6.14: Density function of uncertainty values for the 3 scenes distinguishing be-
tween the two formulas without masking. Top 10 percent outliers are re-
moved.
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The comparison of mean uncertainty is meant to show differences between the two for-
mulas in absolute measured values. By including the relative differences into the investi-
gation, even with difference in total predicted value it might be shown that overall trend
follows the same pattern. The density plot should show the distribution of uncertainty
prediction, to show a theoretical wider spread in values which are not represented in
mean values. In the context of this experiment, the mentioned error is seen as difference
between real ground truth depth dg and predicted depth dp. The heatmap shows the
relation of real error to expected uncertainty. As, in general, higher uncertainty leads to
higher error, this heatmap should show a relation between these.

Mean uncertainty
Figure 6.15 shows the proposed comparison between EMVSNet and the Alternative
formula as mean uncertainty values for the three scenes. In this plot already, a stark
mismatch between aleatoric and epistemic uncertainty values for the Alternative can
be spotted. Up to factor 2000 between aleatoric and epistemic uncertainty is much
higher than the factor 10 that can be seen with EMVSNet. This is the observation
that Meinert et al. [22] made as well. With the new formulation of uncertainty and
Loss, the distribution between both uncertainty types is much more reasonable.

Relative uncertainty
The unreasonable effectiveness of the method proposed by Amini et al. [21] can to
a degree already be spotted in this plot. Although there is this strong mismatch in
aleatoric and epistemic uncertainty, if compared between scenes like in figure 6.16, the
relative difference is much more reasonable and in line with results from EMVSNet.

Density plot
Figures 6.13 and 6.14 show a histogram of uncertainty values with and without the
background included. Especially for the case with masking applied, EMVSNet seems
to have a more even distribution across different uncertainty predictions in comparison
to the Alternative method. It is also noteworthy that the Alternative has wider spread
values. For the case without masking, values for EMVSNet stay reasonable while espe-
cially for epistemic uncertainty, for the Alternative everything gets concentrated at the
lower spectrum of values.

Heatmap
Figure 6.1 illustrates the the bespoken histogram for both, EMVSNet and the Alter-
native. In this plot again, the wider range of values for the Alternative while mainly
concentrating on the lower end of the spectrum is clearly visible. Also figures 6.4 to 6.6
show an enormous missmatch between aleatoric and epistemic uncetainty values
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Conclusion
The experiments conducted in this section underscore the distinct differences between
the two approaches to uncertainty quantification. The Alternative set of formulae, as
critiqued by Meinert et al. [22], exhibits a significant imbalance between aleatoric and
epistemic uncertainties, with the latter often being orders of magnitude greater. This
stark discrepancy suggests that the Alternative method might be theoretically less robust
compared to EMVSNet, which maintains a more balanced and reasonable distribution
between these types of uncertainties.

However, despite this apparent theoretical flaw, the Alternative method demonstrates a
paradoxical effectiveness in practical applications. The PR and ROC curves, discussed
in Appendices 8.5 and 8.6, reveal that the Alternative method performs on par with, and
in some cases even surpasses, the performance of EMVSNet. This phenomenon can be
described as unreasonably effective, a term that echoes the observations made by Amini
et al. [21]. Despite the model’s theoretical inconsistencies, it remains highly capable of
identifying areas of high uncertainty, which is crucial in many practical scenarios.

This paradox highlights that while EMVSNet offers a more theoretically consistent ap-
proach, the Alternative method’s empirical effectiveness cannot be overlooked. Specif-
ically, in scenarios where high uncertainty detection is critical, the Alternative method
proves to be a surprisingly strong contender, regardless of its theoretical limitations.
Therefore, the Alternative method can be seen as a practically viable, and in some cases
superior, approach for uncertainty quantification, demonstrating that the practical ef-
fectiveness observed by Amini et al. [21] can indeed be considered unreasonably effective.
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Figure 6.15: Absolute difference in uncertainty levels across the three scenes, given in
millimeters.
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Figure 6.16: Relative distribution of uncertainty values across three scenes, normalized
to 100% for scene 1.
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6.6 Monte Carlo Dropout

The comparison between EDL and MCD was conducted on the DTU test set, focusing
specifically on scene 4. Figure 6.17 presents a representative result from this scene.

The error maps generated by both methods generally align well, with EDL showing a
slightly higher error overall. Both methods effectively highlight areas of increased uncer-
tainty, particularly along the boundaries where depth changes occur, which correspond
closely to the actual error distribution. However, it was necessary to apply a 2% clip-
ping to the values due to outliers in the MCD variance, which significantly exceeded the
typical range observed in the data.

This behavior is consistent with previous observations when using 10 samples for MCD.
Although theoretically, increasing the number of samples should mitigate this effect,
it remains evident in this scenario. The predictions for aleatoric and epistemic uncer-
tainty tend to be more concentrated within a narrower range, indicating a more stable
uncertainty estimation, albeit with some extreme variances.

Method Mean Time [s]

EDL 0.190
MCD 5.436

Table 6.6: Mean processing time taken from 98 batches for EDL and MCD. For MCD,
30 samples are used.

Table 6.6 illustrates the processing time required for each method, highlighting the
substantial advantage of EDL in terms of computational efficiency. The runtime for
MCD is approximately 28 times longer than that of EDL, with the increase in processing
time closely correlating with the number of samples used.

The implementation of only two dropout layers at a late stage of the network, combined
with high dropout rates, resulted in reasonably accurate predictions. Although there
are several opportunities to refine this approach, such as integrating dropout into more
parts of the network, adjusting dropout rates, and adding regularization layers, the
chosen setup serves as a solid baseline. Future work could explore these optimizations
to enhance the performance and efficiency of MCD further.
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Figure 6.17: Comparison of prediction results from EDL and MCD for DTU scene 4. To
improve visibility, 2% clipping has been performed for all plots.
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6.7 Two-Stage Network

The two-stage approach with a modified activation function, as introduced in Sec-
tion 4.3.2, presents an intriguing method to potentially overcome the limitations en-
countered in previous experiments. This approach was explored in the course of this
work, and the results are illustrated in Figure 6.18.

While the specific details of the network architecture and configuration are not the focus
here, this experiment serves to highlight alternative possibilities for integrating EDL into
MVS. The example demonstrates both potential and ongoing challenges that need to be
addressed when employing this two-stage approach.

Firstly, it is important to note that the depth estimation performance remains robust.
Since the underlying network architecture was used without modification, with uncer-
tainty prediction added as a secondary component, the depth estimation results are
identical to those of the original AA-RMVSNet implementation.

However, the standard deviation of the depth hypothesis reveals a pattern suggestive of
quantization effects, which also manifests in the uncertainty predictions, though with a
different visual signature. Additionally, the estimated uncertainty range appears rela-
tively narrow, indicating that while the approach is effective, it may be constrained by
the current network configuration.

In conclusion, while this two-stage approach shows promise for enhancing both depth
and uncertainty prediction, further research and development are necessary. Specifically,
a network architecture that is explicitly designed and optimized for this dual-task ap-
proach may be required to fully realize the potential benefits and address the identified
challenges.
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Figure 6.18: Results of the two-stage training approach, displaying the input image,
depth estimation error, aleatoric and epistemic uncertainty maps and the
standard deviation of the predicted depth.
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7 Conclusion and Outlook

This work represents a foundational step in integrating Evidential Deep Learning (EDL)
into Multi-View Stereo (MVS) systems, potentially broadening the applicability of MVS
methods in real-world scenarios. It has been demonstrated that by extending the estab-
lished network for depth prediction, it is possible to enhance predictions with uncertainty
values in a relatively resource-efficient manner. The conducted experiments showed ex-
cellent performance on the training dataset, with the model achieving high precision in
identifying areas with significant errors. Due to the lack of ground truth data for un-
certainty, only a stochastically inspired comparison was possible. Future evaluations of
potential datasets that include ground truth uncertainty data would be highly beneficial.
Visually, the predicted uncertainties were well-explained and aligned with expected out-
comes. In this context, checkerboard artifacts were observed, which could potentially
be mitigated by modifying the network architecture, such as by switching to bilinear
interpolation. Based on the results, an intriguing idea emerged: using the predicted
uncertainty values not only for their intended application but also for masking, as they
provide effective object-background separation, at least in cases of relatively uniform
background.

Additionally, the network’s performance was evaluated with varying numbers of view-
points. This investigation did not reveal a dramatic change in performance; however,
the training foundation remained unchanged. In the future, it may be worthwhile to
adjust the number of viewpoints used in training to optimize the setup.

An anomaly was observed in the aleatoric uncertainty during Out of Distribution (OOD)
tests on the Tanks and Temples (TnT) dataset, warranting further investigation. Oth-
erwise, the domain transfer experiments lacked a ground truth comparison, which would
be beneficial for examining the performance on OOD data. Regarding the TnT dataset,
a comparison of the complete reconstruction results while incorporating the predicted
uncertainty would be highly valuable. As this thesis represents an initial approach to
integrating EDL into an MVS pipeline, the complete 3D scene reconstruction was not
addressed, but the chosen approach and observed results suggest interesting possibilities
for filtering or weighting depth predictions.

This work adapted a modified set of equations to express aleatoric and epistemic un-
certainty, as well as an alternative loss function. Peculiarities and different behaviors
were reported here, as in the original paper, so it would be interesting to further investi-
gate why and in which cases these mathematical concepts are beneficial. The two-stage
network approach was not particularly successful, and this approach requires further
investigation and refinement.
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The comparison of EDL to Monte Carlo Dropout (MCD) yielded similar results and
demonstrated the applicability of Evidential Multi-view Stereo Network (EMVSNet).
However, the investigation of this concept was relatively brief. Integrating MCD into
the proposed method could be an intriguing combination to further refine uncertainty
predictions, provided that computational efficiency and runtime are not critical factors.
Conversely, if computational efficiency and runtime are paramount, further investigation
and optimization of the network’s efficiency would be essential.

In addition to these results, experiments demonstrated comparable performance to
Adaptive Aggregation Recurrent Multi-view Stereo Network (AA-RMVSNet) in the task
of depth estimation. Investigating whether incorporating uncertainty predictions could
further enhance depth prediction performance would be advantageous. However, it is
noteworthy that in the cases examined, the model’s performance already surpasses that
of the underlying architecture. Nonetheless, expanding training and inference to include
more views and disparity levels would be beneficial for further evaluation.

Final statement

The reconstruction of 3D scenes is likely to become increasingly important in our daily
lives. Consider the Apple Vision Pro, capable of capturing 3D videos and projecting
three-dimensional information into our world. As technology evolves, the demand for
more immersive and accurate 3D experiences will only grow, influencing industries rang-
ing from entertainment to architecture, education, and beyond. Given the economic
inefficiency of 3D sensors in many applications and the much more cost-effective alter-
native of using cameras, MVS methods will be essential for reconstructing 3D data. As
these methods become more refined, they will play a critical role in shaping how we
interact with digital content in the real world, enabling more seamless and intuitive user
experiences.

While EDL has proven to be an efficient concept with good performance in terms of
MVS, the results generated in this thesis suggest that its application might be of inter-
est in other areas where neural networks are employed as well. The ability to quantify
uncertainty with EDL could enhance decision-making processes in various fields, such as
medical imaging, autonomous driving, and robotics, where understanding the confidence
of a model’s predictions is crucial.

In summary, while this thesis has made significant strides in enhancing the reliability of
MVS through the integration of EDL, it also highlights the complexity and challenges
inherent in accurately predicting and managing uncertainty in 3D reconstruction. This
work paves the way for future innovations that will further bridge the gap between theo-
retical advancements and practical, real-world applications, ensuring that as technology
progresses, so too does our confidence in its outcomes.
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8 Appendix

8.1 Hour Glass network

Figure 8.1: Hours Glass upward path of the network.

Figure 8.2: Hours Glass downward path of the network.
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8.2 Evidential network structure

Figure 8.3: Overview of evidential part of the proposed network.
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8.3 DTU scene selection
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Testing
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8.4 Error distribution

Figure 8.4: Cumulative distribution of error for the three test scenes.
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8.5 PR curves
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Aleatoric Uncertainty for Scene 1
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Epistemic Uncertainty for Scene 1
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Combined Uncertainty for Scene 1
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Aleatoric Uncertainty for Scene 2
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Epistemic Uncertainty for Scene 2
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Combined Uncertainty for Scene 2
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Aleatoric Uncertainty for Scene 3
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Epistemic Uncertainty for Scene 3
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Combined Uncertainty for Scene 3
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8.6 ROC curves
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Aleatoric Uncertainty for Scene 1

Figure 8.14: The red lines indicates an AUC of 0.5 what would mean random guessing.
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Epistemic Uncertainty for Scene 1

Figure 8.15: The red lines indicates an AUC of 0.5 what would mean random guessing.
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Combined Uncertainty for Scene 1

Figure 8.16: The red lines indicates an AUC of 0.5 what would mean random guessing.
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Aleatoric Uncertainty for Scene 2

Figure 8.17: The red lines indicates an AUC of 0.5 what would mean random guessing.
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Epistemic Uncertainty for Scene 2

Figure 8.18: The red lines indicates an AUC of 0.5 what would mean random guessing.
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Combined Uncertainty for Scene 2

Figure 8.19: The red lines indicates an AUC of 0.5 what would mean random guessing.
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Aleatoric Uncertainty for Scene 3

Figure 8.20: The red lines indicates an AUC of 0.5 what would mean random guessing.
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Epistemic Uncertainty for Scene 3

Figure 8.21: The red lines indicates an AUC of 0.5 what would mean random guessing.
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Combined Uncertainty for Scene 3

Figure 8.22: The red lines indicates an AUC of 0.5 what would mean random guessing.
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8.7 Frames of scene 32

(a) Source frame of scene 32.

(b) Reference frame of scene 32.

(c) Source frame of scene 32.
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8.8 Graphs: EMVSNet Train
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(b) Loss in testing.
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(c) Aleatoric uncertainty.
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(d) Epistemic uncertainty.

Figure 8.24: All measurements given in millimeter.
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(a) 2 cm error for testing data.
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(b) 4 cm error for testing data.
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(c) 8 cm error for testing data.
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(d) 16 cm error for testing data.
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(e) 32 cm error for testing data.

Figure 8.25: The plots display the number of depth predictions that fall outside the specified
error range, with all measurements provided in decimal scale.
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8.9 Graphs: EMVSNet Test
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(a) Graph for absolute error.
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(d) Epistemic uncertainty.

(e) All measurements given in millimeter.
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(e) 32 cm error for testing data.

Figure 8.27: The plots display the number of depth predictions that fall outside the specified
error range, with all measurements provided in decimal scale.
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8.10 Graphs: EMVSNet Fulltest
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(b) Loss in full testset.
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Figure 8.28: All measurements given in millimeter.
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(e) 32 cm error for full testset.

Figure 8.29: The plots display the number of depth predictions that fall outside the specified
error range, with all measurements provided in decimal scale.
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8.11 Graphs: Alternative Train
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(d) Epistemic uncertainty.

Figure 8.30: All measurements given in millimeter.
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(d) 16 cm error for testing data.
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(e) 32 cm error for testing data.

Figure 8.31: The plots display the number of depth predictions that fall outside the specified
error range, with all measurements provided in decimal scale.
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8.12 Graphs: Alternative Test
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(d) Epistemic uncertainty.

Figure 8.32: All measurements given in millimeter.
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(e) 32 cm error for testing data.

Figure 8.33: The plots display the number of depth predictions that fall outside the specified
error range, with all measurements provided in decimal scale.
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8.13 Graphs: Alternative Fulltest
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(d) Epistemic uncertainty.

Figure 8.34: All measurements given in millimeter.
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(e) 32 cm error for full testset.

Figure 8.35: The plots display the number of depth predictions that fall outside the specified
error range, with all measurements provided in decimal scale.
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8.14 Graphs: MCD Training
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8.15 Overview: Networks

134



Network architectures: Multi-view Stereo

Title Short Year Type Code Aleatoric 

uncertainty

Epistemic 

uncertainty

DTU Overall TnT Average Features

Uncertainty awareness with adaptive propagation 
for multi-view stereo

AP-UCSNet 2023 MVS Yes Yes Yes 0,323 54,93 • Uncertainty awareness for depth hypothesis

GeoMVSNet: Learning Multi-View Stereo With 
Geometry Perception

GeoMVSNet 2023 MVS Yes Yes No 0,295 65,89

Prior depth-based multi-view stereo network for 
online 3D model reconstruction

- 2023 MVS No Yes No 0,319 - • Bayesian probability volume

Vis-MVSNet: Visibility-Aware Multi-view Stereo 
Network

Vis-MVSNet 2022 MVS Yes Yes No 0,365 60,03 • Uncertainty estimation due to RobustMVS


• Detailed network architecture provided

Generalized Binary Search Network for Highly-
Efficient Multi-View Stereo

GBi-Net 2022 MVS Yes Yes No 0,289 61,42 • Depth hypothesis as binary search problem

MVSFormer: Multi-View Stereo by Learning Robust 
Image Features and Temperature-based Depth

MVSFormer 2022 MVS Yes Yes No 0,289 66,37 • Transformer

• Self attention

• Regression and classification confidence based

Multi-View Stereo Network with Attention Thin 
Volume

- 2022 MVS No Yes No 0,331 55,97 • Feature-wise loss function

• Thin volume attention

• Attention mechanism


• Low memory consumption

Uncertainty Guided Multi-View Stereo Network for 
Depth Estimation

UGNet 2022 MVS No Yes No 0,332 63,12 • Uncertainty guidance

• Uncertainty awareness for depth hypothesis

• Detailed network layout provided

TransMVSNet: Global Context-aware Multi-view 
Stereo Network with Transformers

TransMVSNet 2022 MVS Yes Yes No 0,305 63,52 • Feature-matching transformer

• Adaptive receptive field module

• Transformer architecture

Digging into Uncertainty in Self-supervised Multi-
view Stereo

U-MVS 2021 MVS Yes Yes Yes 0,354 57,15 • Monte Carlo dropout gives epistemic uncertainty

• Does exclude points with low probability from learning

AA-RMVSNet: Adaptive Aggregation Recurrent 
Multi-view Stereo Network

AA-RMVSNet 2021 MVS Yes No No 0,357 61,51 • Attention mechanism

Deep Stereo using Adaptive Thin Volume 
Representation with Uncertainty Awareness 

UCS-Net 2020 MVS Yes Yes No 0,344 54,83 • The depth hypothesis of each stage adapts to the uncertainties of previous per-pixel depth prediction

Deepc-mvs: Deep confidence prediction for multi-
view stereo reconstruction

Deepc-MVS 2020 MVS No Yes No - 59,79

Confidence-based large-scale dense multi-view 
stereo

CLD-MVS 2020 MVS No Yes No 0,383 - • Uses confidence driven interpolation

MVSNet: Depth Inference for Unstructured Multi-
view Stereo

MVSNet 2018 MVS Yes No No 0,462 43,48 • Trainable end-to-end

Depth and motion network for learning monocular 
stereo

DeMoN 2017 MVS Yes No No - - • Novel loss function to combine photometric consistency with a smoothness constraint

Structure-from-Motion Revisited COLMAP 2016 MVS Yes No No 0,532 -

Uncertainty-Aware Deep Multi-View Photometric 
Stereo

- 2022 MVS + Stereo No Yes Yes - - • Monte Carlo dropout gives epistemic uncertainty

•

Uncertainty Estimation for Stereo Matching Based 
on Evidential Deep Learning

- 2021 Stereo Yes Yes Yes - - • Normal Inverse-Gamma distribution



8.16 Overview: Datasets
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Datasets: 3D Reconstruction from Multi-view Stereo

Dataset Year Title Scale and environment Special features 3D Capturing method Facts

Skoltech3D 2023 Skoltech3D: Multi-Sensor Large-Scale Dataset 
for Multi-View 3D Reconstruction

• Small laboratory 
objects

• Different lighting setups

• Various 3D capturing methods

• Smartphones

• Intel RealSense

• Microsoft Kinect

• Industrial cameras

• Structured-light scanner

• 107 scenes

• 1.4 million images

• 100 viewing directions

• 14 lighting conditions

Giga-MVS 2022 GigaMVS: A Benchmark for Ultra-Large-Scale 
Gigapixel-Level 3D Reconstruction

• Ultra large scale 
outdoor

• Gigapixel resolution

• Large urban scenes

• Labeled semantics

• LiDAR • 13 scenes

• 2,9M gigapixel images

UrbanScene3D 2022 Capturing, Reconstructing, and Simulating: the 
UrbanScene3D Dataset

• Large scale outdoor • Synthetic CAD models • High precision LiDAR • 16 scenes:

• 10 synthetic and 6 real


• 128k images

BlendedMVG 2020 BlendedMVS: A Large-scale Dataset for 
Generalized Multi-view Stereo Networks

• Small to large scale 
objects and laboratory 
objects

• Upgrade from BlendedMVS • 3D reconstruction pipeline • 502 scenes

• 110k images

Tanks and Temples 2017 Tanks and Temples: Benchmarking Large-Scale 
Scene Reconstruction

• Large objects and mid-
scale indoor and 
outdoor sites

• Large scale objects • LiDAR • 21 scenes

• 148k images

ScanNet 2017 ScanNet: Richly-annotated 3D Reconstructions 
of Indoor Scenes

• Room scale indoor • Includes semantic and instance level 
annotations

• Intel RealSense

• Microsoft Kinect

• 1513 scenes

• 2,5M images

ETH3D 2017 A Multi-View Stereo Benchmark with High-
Resolution Images and Multi-Camera Videos

• Large scale indoor and 
outdoor

• Mixed indoor and outdoor scenes

• Challenging scenarios

• LiDAR • 24 scenes

• 11k images

DTU 2016 Large-scale data for multiple-view stereopsis • Laboratory objects • Standard Benchmark in MVS

• High resolution images

• Structured setup

• Various lighting conditions

• Structured Light Reconstruction • 80 scenes

• 27k images

Middlebury MVS 2006 A comparison and evaluation of multi-view 
stereo reconstruction algorithms 

• Laboratory objects • First widely used MVS dataset • 3D reconstruction pipeline • 2 scenes - temple and dino

• 312 and 363 camera positions
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