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Abstract

In the realm of semantic scene surface reconstruction research, which involves the dual tasks of
3D reconstruction and semantic segmentation, effectively leveraging the synergistic information
between these two tasks has remained a persistent challenge. Traditional deep learning based ap-
proaches that sequentially address these tasks often result in inconsistencies between geometric
and semantic boundaries. Recently, implicit functions have gained widespread application in this
domain. By integrating the strengths of occupancy functions, semantic occupancy networks have
been introduced to concurrently perform 3D reconstruction and semantic segmentation. To address
the performance bottleneck of this network, this paper proposes structural optimizations, mainly
in feature encoding module, for the semantic occupancy network. Additionally, it introduces new
reweighting factors in the hierarchical loss function to tackle the issue of class imbalance inherent
in semantic segmentation tasks. The effectiveness of the proposed structural optimizations and the
improved performance on minority classes are quantitatively evaluated through a series of experi-

ments.
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1 Introduction

Three-dimensional(3D) reconstruction and semantic scene understanding are fundamental tasks
within computer vision field, comprising the dual objectives of reconstructing geometric surfaces
and performing semantic segmentation. This process is crucial across various domains, including
computer-aided design, computer animation, virtual reality, medical imaging, autonomous driving
and etc.. One of the primary challenge lies in accurately reconstructing surfaces from diverse data
modalities, such as noisy point clouds, images, and depth maps, each presenting unique difficulties.
Noisy point clouds, for instance, provide scattered spatial data points that often lack the necessary
density and continuity to form coherent surfaces, complicating both geometric reconstruction and

semantic labeling.

Semantic scene reconstruction involves creating a 3D representation of a scene while assigning se-
mantic labels to different elements within the scene. Traditional methods typically involve explicit
geometric modeling combined with segmentation algorithms. Classical pipelines might utilize point
cloud denoising followed by surface fitting, while modern approaches increasingly employ deep learn-
ing techniques. Methods based on Convolutional Neural Networks (CNNs)(57) and Graph Neural
Networks (GNNs)(78) have been adapted for this purpose, demonstrating significant advancements

in handling the intricacies of semantic scene reconstruction.

The introduction of implicit functions, particularly signed distance functions (SDF) and occupancy
functions, has significantly enhanced the capabilities of semantic scene reconstruction. These im-
plicit representations offer continuous, differentiable models that can accurately capture complex
geometries and semantic labels from noisy point clouds. Notable approaches include NeRF(60)
(Neural Radiance Fields), which utilizes differentiable volume rendering, methods like Deep Implicit
Moving Least-Squares Functions(49), which directly learn from noisy inputs to produce high-fidelity
reconstructions, and Points2Surf(24) framework, which learns implicit surfaces directly from raw
scans without needing normals. These innovations address key issues such as noise robustness and
the reconstruction of fine details and intricate structures, some of them even highly suitable for

noisy data scenarios(56).

Despite these advancements, current methods still face several limitations. Challenges include han-

dling high noise levels in point clouds, achieving consistent semantic labeling across varying input
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densities, ensuring consistency of geometric and semantic boundaries and managing computational
complexity. Methods such as SNI-SLAM(109), which integrates semantic information into neural
implicit SLAM systems, show promise but also highlight the ongoing difficulties in balancing accu-
racy, efficiency, and robustness. S3CNet(14), by introducing a neural network architecture based on
sparse convolutions, successfully addresses the challenges posed by sparse point clouds in large-scale
outdoor scenes, unlike previous attempts focused on small dense indoor environments. However,
S3CNet still relies on a sequential execution of binary sub-tasks. To overcome this, the Semantic
Occupancy Network(58) introduces an innovation by simultaneously achieving surface reconstruc-
tion and semantic segmentation through the integration of occupancy information. Moreover, since
previous public datasets like SemanticKITTI(3) and nuScenes(7) mostly provide semantic labels
at the voxel level, which are not suitable for learning methods based on implicit surface represen-
tations, we utilize a variant of the Hessigheim(39) dataset proposed in the paper of the Semantic

Occupancy Network.

In this paper, we attempt to make the following contributions:

e Combining the PointNet based variant and subsequent researched modules built upon it into
the Semantic Occupancy Network(58) to optimize the feature encoding structure to achieve

improved accuracy in both aspects of geometric and semantic part.

e Introducing novel reweighting strategies into hierarchical loss function to optimize the class
imbalance problem in simultaneous geometric and semantic tasks to improve the segmentation

accuracy of minority categories.

e Extensive experiments to validate the proposed framework, demonstrating improvements in

both geometric and semantic accuracy.

In the subsequent sections of this thesis, the theoretical foundations are firstly established in Chap-
ter 2, including certain aspects like the basic knowledge of the implicit function, semantic scene
reconstruction, point feature encoding and the class imbalance problem. Chapter 3 provides a
comprehensive survey of the current status of the researches pertinent to the domain of interest.
A detailed description of the proposed general framework as well as the corresponding components
are given in Chapter 4. The experimental settings are covered in Chapter 5, followed by the de-
tailed illustrations and discussions of the obtained results in Chapter 6. The conclusions and a

forward-looking perspective on potential avenues for future investigations is provided in Chapter 7.



2 Theoretical Background

2.1 Implicit Function

Implicit functions are mathematical constructs defined by equations where the dependent and
independent variables are implicitly interrelated rather than explicitly expressing the dependent
variable as a function of the independent variable. A classical example is the equation of a circle,
2?2 + 3% = r2, which implicitly defines the relationship between x and y. Unlike explicit functions
such as y = f(z), implicit functions are more versatile and powerful in representing complex ge-

ometries and multivariable relationships.

Implicit functions find extensive applications across various domains: In geometric modeling, im-
plicit functions are extensively used for surface modeling and rendering(97)(87), particularly for
complex shapes and freeform surfaces. In physical simulations, implicit functions are employed to
describe dynamic changes of object surfaces in fluid dynamics and elasticity(63)(40). In robotics,
they help in path planning(21)(101) by representing obstacles and free spaces, thus aiding in obsta-
cle avoidance. Moreover, implicit functions have demonstrated exceptional performance in other
tasks including 3D reconstruction and semantic segmentation. Notably, the use of neural implicit
representations, such as those employed in Convolutional Occupancy Networks(67), enables the
incorporation of inductive biases like translational equivariance, facilitating the reconstruction of
complex scenes from noisy point clouds and low-resolution voxel representations. The following are
some common implicit functions, including Signed Distance Function (SDF)(66), Unsigned Dis-
tance Function (UDF)(15), and Occupancy Function(59):

The Signed Distance Function (SDF) represents the signed distance from any point in space to
the target surface, with positive values for points outside the surface, negative values for points
inside, and zero for points on the surface. Typically, applying SDF involves generating a regular
grid in the target 3D space, then calculating the nearest distance from each grid point to the target
surface and storing these distances in a 3D array or other data structures. Leveraging its ability
to accurately represent the boundaries of complex geometries, providing a unified representation
for closed surfaces, the representation in the SDF form is highly effective in accurately defining
complex geometries, making it widely used in high-precision 3D reconstruction, collision detection,

and shape analysis tasks. For instance, DeepSDF(66) leverages neural networks to represent con-
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tinuous SDF's for classes of shapes, enabling high-quality shape representation, interpolation, and
completion from partial and noisy 3D input data. Though traditional SDF methods are compu-
tationally intensive and require significant storage space, posing challenges for real-time updates
in dynamically changing environments. However, these limitations have been alleviated by deep
learning based approaches, which optimize storage and computation, allowing more efficient and

scalable SDF representations.

The Unsigned Distance Function (UDF) measures the absolute distance from any point in space
to the target surface, lacking the ’sign’ information compared to SDF. While UDF cannot differ-
entiate between the inside and outside of a surface, it is capable of reconstructing both closed and
open surfaces when combined with other technologies like NeuralUDF, providing more flexibility
for complex topologies than SDF, which necessitates the built-in nature to segmente shapes into
inside and outside regions, thereby restricting its ability on open or highly complex surfaces. Re-
cent advancements like NeuralUDF (55) introduces a differentiable indicator function to transform
the UDF distance field into a volume density field, thereby enabling surface reconstruction in a
manner similar to NeRF based approaches. Although this method effectively combines the advan-
tages of UDF and volume density functions, addressing the inherent limitation of UDF in inferring
occupancy statuses due to the lack of ’sign’ information, it nonetheless suffers from optimization
instability due to the inherent non-differentiability nature of UDF at zero-level sets, which poses
challenges during model learning processes and hampers the accuracy of the reconstructed surfaces.
Therefore, despite the computational efficiency and reduced storage requirements of UDF, its appli-
cation necessitates a careful consideration of its advantages against its disadvantages, particularly
regarding its suitability for tasks that require distinguishing between points inside and outside the
surface. However, UDF is still advantageous in rapid reconstruction and basic segmentation tasks

due to its computational efficiency.

The Occupancy Function is a binary indicator that specifies whether a point in space is occupied,
with a value of 1 indicating occupancy and 0 indicating non-occupancy. This simple, intuitive
representation is computationally efficient and ideal for large-scale 3D data processing, such as
occupancy grid representation and robotic path planning. For example, Convolutional Occupancy
Networks(67) extend traditional occupancy networks(59) by incorporating convolutional opera-
tions, enabling them to capture local and global spatial information effectively. This approach
supports the detailed reconstruction of objects and large-scale scenes from noisy inputs, providing
robust performance in real-world applications. Although the occupancy function itself lacks the
ability for detailed geometric information, additional techniques such as that is proposed in Con-

volutional Occupancy Networks(67) take effect for capturing fine spatial details.

The next subsection briefly introduces the Convolutional Occupancy Network(67), which is also
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the basis on which the subsequent baseline of this paper is built.

2.1.1 Convolutional Occupancy Network

Convolutional Occupancy Network(67) presents an advanced framework for 3D reconstruction by
combining the strengths of convolutional neural networks (CNNs) with implicit occupancy repre-
sentations. This approach enables detailed and scalable 3D reconstructions of both objects and
complex scenes, addressing the limitations of prior methods(59) that rely on simple fully-connected

architectures.

Encoder:

The encoder architecture efficiently processes 3D input data such as point clouds or occupancy
grids. For point cloud extraction, a fully-connected layer followed by ResNet blocks maps 3D point
coordinates into a feature space. Features are locally pooled and concatenated before feeding into
subsequent ResNet blocks, allowing effective aggregation of local information. A single 3D con-
volutional layer extracts voxel-wise features from occupancy grids. The features are then further
processed by a U-Net, which handles plane or volume features, providing translational equivariance

and integrating local and global information through down-sampling and up-sampling convolutions.

Additionally, the encoder is designed to handle different types of input representations: Point cloud
encoder utilizes a shallow PointNet-like architecture with local pooling to efficiently encode point-
wise features, which differs from traditional PointNet and enhancing the encoding of fine geometric
details; While voxel encoder processes occupancy grids using a 3D convolutional layer, extracting

voxel-wise features that encapsulate spatial information effectively.

Decoder:

The decoder employs a stack of fully-connected ResNet blocks to predict the occupancy probability
of query points. By leveraging shallow architectures for memory efficiency, the decoder facilitates
detailed and memory-efficient 3D reconstructions. The decoder architecture enables precise oc-
cupancy probability predictions using locally aggregated feature maps from the encoder. This
combination of convolutional operations and fully-connected layers allows the model to reconstruct

detailed 3D geometries accurately.

In short, the Convolutional Occupancy Network offers advantages in the field of 3D reconstruction

over the following several points:

e Scalability: The convolutional nature allows the network to scale from single objects to entire
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scenes efficiently, making it suitable for both small and large-scale reconstructions.

e Translational Equivariance: By employing convolutions, the model incorporates inductive
biases such as translational equivariance, enhancing its ability to generalize across different

spatial configurations.

e Memory Efficiency: The use of shallow decoders and the reduction of parameter counts make

the network more memory-efficient compared to traditional occupancy networks.

e Detailed Reconstruction: The Convolutional Occupancy Network excels in preserving fine
geometric details, crucial for accurate 3D modeling, particularly from noisy or partial point

clouds.

All in all, the Convolutional Occupancy Network represents a significant advancement in 3D re-
construction by integrating convolutional encoders and implicit occupancy decoders. This novel
approach effectively handles complex geometries(object-level) and large-scale scenes(scene-level),
providing a robust, scalable, and memory-efficient solution for 3D modeling tasks. The network’s
ability to preserve fine details and generalize across various datasets, as shown on real-world datasets
like ScanNet(20) and Matterport3D(71), makes it a powerful tool for a wide range of applications

in computer vision and beyond.

Based on the Convolution Occupancy Network, (58) proposed the Semantic Occupancy Network
to leverage the occupancy function for simultaneous 3D reconstruction and semantic segmentation

tasks, which forms the baseline for the subsequent research presented in this paper.

2.2 Semantic Scene Reconstruction

2.2.1 3D Reconstruction

Three-dimensional (3D) reconstruction is a vital field in computer vision, focusing on recreating
the 3D geometry of objects or scenes from two-dimensional (2D) images or point clouds. This
process is integral to various applications, including robotics, medical imaging, cultural heritage

preservation, virtual reality and etc..

Traditional 3D reconstruction methods can be categorized into passive and active techniques. Pas-
sive methods like Structure from Motion (SfM)(74), which utilizes multiple 2D images from different
viewpoints, detecting and matching key points across views to estimate camera parameters and re-
construct 3D structures. Stereo vision(75), another passive technique, uses images captured by two

or more cameras from slightly different angles to compute depth information based on the disparity
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between the images.

Active techniques include laser scanning, structured light, and time-of-flight (ToF) cameras. Laser
scanning(81) projects laser beams onto surfaces and measures the reflected light to obtain precise
3D coordinates. Structured light(2) involves projecting known patterns onto a scene, analyzing
the deformation of these patterns to reconstruct 3D shapes. ToF cameras(38) estimate depth by

measuring the time light takes to travel to and from the object.

Recent advancements incorporate Generative Adversarial Networks (GANs) into 3D reconstruc-
tion workflows to enhance various aspects. GANs(65) improve the resolution and accuracy of
depth maps generated from stereo images, predict and fill occluded parts of objects, and generate
realistic textures for 3D models, enhancing visual fidelity. Methods like 3D-GAN(91), Pix2Vox(95),
and PC-GAN(32) illustrate the integration of GANs in generating 3D objects from 2D images or

refining shapes from point cloud data.

Despite these advancements, several challenges remain in 3D reconstruction: Occlusions, where
parts of the scene are hidden from certain viewpoints, and textureless surfaces are significant
obstacles that complicate feature detection. Additionally, the computational complexity of high-

resolution reconstructions and the dynamic nature of moving scenes pose further challenges.

Leveraging deep learning techniques, recent progress has significantly improved the accuracy and
robustness of 3D reconstructions. The integration of multi-modal data, such as combining RGB
images with depth sensors(94), has further enhanced reconstruction quality. The introduction of
implicit functions, such as occupancy function(59), has further revolutionized this field by allowing
the representation of 3D shapes without explicitly storing geometric data, leading to significant

storage savings and efficient handling of complex geometries from limited input.

In conclusion, 3D reconstruction is a rapidly evolving field with substantial implications across var-
ious domains. Continuous development of new techniques and the integration of advanced machine
learning models promise to overcome current limitations and drive further advancements in this

essential area of computer vision.

2.2.2 Semantic Segmentation

Semantic segmentation is another pivotal task in computer vision, aiming to classify each pixel
in an image or voxel in a 3D volume into a predefined category. This fine-grained understanding

of scenes is critical in applications such as autonomous driving, medical imaging, and augmented
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reality, where precise localization and identification of objects are essential.

Traditional methods for semantic segmentation in 2D data involve techniques such as thresholding,
edge detection, and region-based methods. Thresholding is simple but often ineffective in complex
scenarios with varying illumination. Edge detection algorithms like the Canny(22) and Sobel(28)
filters can delineate boundaries but lack semantic context. Region-based methods such as Region
Growing(1) and Watershed(76) group pixels based on similarity, but they struggle with texture

variations and noisy data.

The advent of deep learning has significantly enhanced the performance of semantic segmentation.
Fully Convolutional Networks (FCNs)(54) marked a breakthrough by replacing fully connected
layers with convolutional layers, enabling dense pixel-wise predictions. 3D U-Net(17), particularly
effective in biomedical imaging, employs an encoder-decoder architecture with skip connections that
preserve spatial information. DeepLab(11), utilizing atrous convolutions and Conditional Random
Fields (CRFs), excels in capturing multi-scale contextual information and refining object bound-

aries.

For 3D data, semantic segmentation methods extend these concepts to volumetric data. Voxel-
based methods often use 3D Convolutional Neural Networks (3D CNNs)(30) to process volumetric
data, enabling the segmentation of 3D medical images and point clouds. However, these methods
are computationally intensive and memory-demanding. Multi-view approaches project 3D data
into multiple 2D views, leveraging established 2D segmentation techniques but facing challenges in
merging results from different views, often accompanied by potential semantic boundary inconsis-

tency issues.

Implicit function representations offer significant advantages for semantic segmentation in both
2D and 3D data. These functions, such as Signed Distance Functions (SDFs)(66) and occu-
pancy fields(59), provide continuous and memory-efficient representations, allowing for detailed
and smooth surface reconstructions. They adapt seamlessly to various resolutions and scales, en-

hancing flexibility and efficiency in processing.

Despite these advancements, several challenges persist: Class imbalance, where some categories
are underrepresented in training datasets, can lead to poor model performance for those classes.
Achieving precise boundaries between objects remains difficult, especially in complex scenes with
occlusions and overlapping objects. The computational demand for processing high-resolution im-

ages or volumetric data is substantial, necessitating efficient algorithms and powerful hardware.

Current techniques exhibit a range of strengths and weaknesses. FCNs(54) are straightforward and
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effective but may miss fine details. 3D U-Net(17) performs exceptionally well in specific domains
like medical imaging but can be computationally intensive. DeepLab(11) achieves high accuracy
and precise boundary delineation but requires careful hyperparameter tuning. In 3D segmentation,
voxel-based methods provide detailed volumetric segmentation but face significant computational
and memory constraints(50). Implicit function-based methods offer efficiency and flexibility but

integrating them into existing deep learning frameworks can be complex in some cases.

All in all, semantic segmentation is a dynamically evolving field, driven by advancements in deep
learning and computational techniques. The integration of implicit functions presents new oppor-
tunities for efficient and precise segmentation of both 2D and 3D data. However, challenges such as
class imbalance, boundary precision, and computational demands necessitate ongoing research and
innovation. Future work is expected to focus on such aspects including enhancing model efficiency,
improving boundary precision, and broadening the applicability of semantic segmentation across

diverse domains.

2.2.2.1 3D U-Net

The application of convolutional neural networks (CNNs) to biomedical image segmentation has
demonstrated remarkable success, particularly with the introduction of the U-Net(72) architecture
for 2D images. However, many tasks, especially in biomedical imaging and large-scale outdoor
environments, require volumetric segmentation. Extending 2D methods to these domains is non-
trivial due to the inherent complexity and higher-dimensional nature of the data. To address these
challenges, the 3D U-Net(17) architecture was developed, leveraging 3D convolutions to perform

dense volumetric segmentation from sparse annotations.

The 3D U-Net extends the 2D U-Net by replacing 2D operations with their 3D counterparts. This
architecture(see figure 2.1) comprises a contracting path (encoder) and an expanding path (de-
coder). The encoder captures context through repeated application of 3x3x3 convolutions, followed
by rectified linear unit (ReLU) activations and 2x2x2 max pooling operations. This process pro-
gressively reduces spatial dimensions while increasing the number of feature channels. Conversely,
the decoder path mirrors the encoder, utilizing 3D up-convolutions to progressively restore spatial
dimensions and refine the segmentation map. Skip connections between corresponding layers of the
encoder and decoder paths facilitate the transfer of high-resolution features, which are critical for

precise localization.
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Figure 2.1: Architecture of 3D U-Net(17)

Integral components of the 3D U-Net architecture include 3D convolutions, 3D max pooling, and
3D up-convolutions. The network also incorporates batch normalization layers, which standardize
the inputs to each layer, accelerating training convergence and improving model performance. To
handle sparse annotations, a weighted softmax loss function is employed by assigning zero weights

to unlabeled pixels, enabling effective learning from partially annotated volumes.

One primary advantage of the 3D U-Net is its ability to perform accurate and efficient volumetric
segmentation from sparse annotations, significantly reducing the annotation burden in biomedical
applications. Its design captures both local and global context, facilitating precise segmentation
even in complex structures. Furthermore, the use of batch normalization enhances training stability
and model generalization. However, the high computational and memory demands of processing 3D
volumes pose significant challenges. Training 3D U-Net models requires substantial computational

resources and time, which could be a potential limiting factor in some cases.

The 3D U-Net is particularly well-suited for semantic segmentation tasks in various fields including
biomedical domain and large-scale outdoor environments due to its ability to handle volumetric
data and learn from sparse annotations. In medical imaging, obtaining fully annotated datasets
is often impractical, making the 3D U-Net’s capabilities crucial. The architecture’s effectiveness
has been demonstrated in applications such as brain tumor segmentation, liver and kidney seg-
mentation, and organ and tissue delineation tasks. Additionally, in outdoor scenes, 3D U-Net can
segment complex environments, aiding in autonomous driving and urban planning by generating

high-resolution segmentation maps that improve object recognition and spatial understanding.
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Several notable models and variations have been developed based on the 3D U-Net architecture
to enhance its performance for specific tasks. For instance, the V-Net(61) incorporates residual
connections and a Dice loss function, which is particularly effective for dealing with class imbalance
common in medical imaging. Additionally, the Attention U-Net(64) integrates attention mech-
anisms to focus on relevant features and suppress irrelevant background noise, further improving
segmentation accuracy. Extensions such as the 3D U-Net++(107) introduce dense skip connections

and deep supervision to refine the segmentation output.

In summary, the 3D U-Net architecture represents a significant advancement in volumetric image
or voxel-like segmentation, particularly for biomedical and large-scale outdoor applications. By
extending the 2D U-Net to handle 3D data, the 3D U-Net effectively addresses the challenges of
volumetric segmentation, leveraging sparse annotations to produce dense and accurate segmenta-
tion maps. Despite its computational challenges, the 3D U-Net’s ability to capture detailed context
and generate high-resolution segmentations makes it an invaluable tool in advancing spatial analy-
sis. Future research is likely to focus on optimizing computational efficiency and further enhancing
segmentation accuracy, ensuring the continued applicability and impact of the 3D U-Net in diverse

domains.

2.2.2.2 SwinTransformer

The Swin Transformer(52), a hierarchical vision Transformer, effectively addresses the limitations
of traditional Transformer models in computer vision, particularly for tasks involving large-scale
visual entities and high-resolution images. Unlike conventional Transformers, which struggle with
the varying scales of visual elements and exhibit quadratic computational complexity, the Swin
Transformer employs a hierarchical architecture with shifted windows to mitigate these issues.
This design makes it suitable for a diverse range of vision tasks, including image classification,

object detection, semantic segmentation, pose estimation and etc..

The architecture(see figure 2.2) of the Swin Transformer includes several key components. Initially,
an input image is divided into non-overlapping patches, which are treated as tokens and embedded
into feature vectors using a linear embedding layer. The architecture then utilizes a series of Swin
Transformer blocks, each comprising multi-head self-attention modules with shifted windows and
multi-layer perceptrons (MLPs). The shifted window approach confines self-attention computation
within non-overlapping windows, significantly reducing computational complexity. The hierarchical
design enables the network to process features at multiple scales, effectively capturing both local

and global context.
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Figure 2.2: Architecture of Swin Transformer, where LN denotes a linear layer, W-MSA stands for
windowed multi-head self-attention layer, and SW-MSA extends W-MSA by incorpo-

rating a shifting operation, MLP represents a multi-layer perceptron.(52)

One of the primary advantages of the Swin Transformer is its linear computational complexity con-
cerning image size, achieved by restricting self-attention to local windows. This capability allows
the model to handle high-resolution images and dense prediction tasks efficiently. Additionally, the
shifted window mechanism introduces cross-window connections, enhancing the model’s ability to
capture long-range dependencies and improving overall performance. The incorporation of relative
position bias further boosts the model’s effectiveness by maintaining spatial relationships between

patches.

The Swin Transformer is particularly well-suited for semantic segmentation tasks. Its hierarchical
feature maps align seamlessly with existing dense prediction techniques such as feature pyramid
networks (FPN)(46) and 3D U-Net(17), making it a versatile backbone for various vision tasks. In
semantic segmentation, the Swin Transformer surpasses previous state-of-the-art models, achieving
notable improvements with metrics such as mean Intersection over Union (mloU). For example,
it achieves 53.5 mloU on the ADE20K(106) validation set, outperforming previous models by a

substantial margin.

Several models have incorporated the Swin Transformer to enhance their performance in specific
tasks. For instance, the Swin Transformer has been integrated into object detection frameworks
like Cascade Mask R-CNN(9), ATSS(5), and RepPoints V2(12), achieving higher accuracy and ef-
ficiency compared to traditional CNN-based backbones. Its application in 3D reconstruction tasks
benefits from its ability to model fine-grained details and capture complex spatial relationships,

crucial for generating accurate 3D representations of scenes.

In large outdoor scenes, the Swin Transformer excels in semantic segmentation and 3D reconstruc-

tion by effectively handling high-resolution inputs and modeling the intricate details and variability
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of outdoor environments(52). Its ability to generate hierarchical feature maps and maintain linear
computational complexity ensures that it can process large-scale data efficiently, making it an ideal

choice for these demanding tasks.

In conclusion, the Swin Transformer represents a significant advancement in vision Transformers,
providing a robust and efficient solution for a wide range of computer vision tasks. Its hierarchical
architecture, shifted window approach, and linear computational complexity make it particularly
effective for semantic segmentation and 3D reconstruction. Future research is likely to explore
further optimizations and applications of the Swin Transformer, cementing its role as a versatile

backbone in computer vision.

2.3 Point Feature Encoding

2.3.1 PointNet Based Variant

PointNet(68) is a neural network architecture designed specifically for processing point clouds.
Based on PointNet, several variants have been developed. In this work, we employ one of these
variants. Similarly, the variant converts input points into a local coordinate system based on a pre-
defined voxel size, allowing it to handle a variable number of point cloud inputs, but necessitating
precomputed local pooling indices. Then it integrates multiple ResNet modules and subsequently
combines a 3D U-Net structure to enhance feature refinement. The basic structure of the PointNet-

based variant is illustrated in figure 2.3:
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Figure 2.3: Basic structure of PointNet based variant.
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Initially, the positional data of the input points are processed through a linear layer to increase the
channel dimensions for subsequent feature encoding. The first ResNet module adjusts the channel
dimensions, followed by a local max pooling operation before each new ResNet module is intro-
duced. The features obtained are concatenated with the output of the previous ResNet module
and then input into a new ResNet module, implementing a specified number of recycles. Finally,
after adjusting the channel dimensions, grid features of the specified size are generated and input

into 3D U-Net for further feature extraction based on the context.

2.3.2 PointNet-++

Compared to PointNet, PointNet++(69) employs a hierarchical feature extraction approach, with
each feature extraction combination referred to as a set abstraction layer. Each set abstraction

layer consists of three components: sampling, grouping, and feature extraction.
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Figure 2.4: Basic structure of PointNet++.

In the sampling step, the goal is to extract important central points from the dense point cloud.
This is achieved using the farthest point sampling (FPS) method to obtain the desired number of
points for each group. These points do not necessarily contain semantic information. Following
sampling, grouping is performed. For each central point obtained from the sampling step, k-nearest

neighbors within a spherical region are identified to form a group. In the feature extraction step,
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the k-nearest neighbors of each sampled point are processed through multiple convolutional and
pooling operations. The resulting features are treated as the features of the sampled point, analo-
gous to a simplified version of PointNet feature extraction for each sampled point with respect to

its neighborhood.

The above-mentioned three steps constitute one set abstraction layer. PointNet++ typically em-
ploys three such layers, with each successive layer reducing the number of central points while

increasing the amount of information contained in each point.

Additionally, PointNet++ addresses the issue of non-uniform sampling density, where fixed-range
selection of a fixed number of nearest neighbors might not adequately represent features for each
sampled point. Two solutions are proposed: Multi-Scale Grouping (MSG) and Multi-Resolution
Grouping (MRG).

Multi-Scale Grouping (MSG): Each grouping layer determines groups using multiple scales (dif-
ferent neighborhood radii). Features are extracted using a simplified version of PointNet and

concatenated to form new features.

Multi-Resolution Grouping (MRG): Features from different layers are combined. For example, one
branch might use two consecutive set abstraction layers with decreasing sampling sizes and different
radii, while another branch uses one set abstraction layer with the same sampling size as the first
set abstraction layer in branch 1 but different radii. Features from both branches are weighted and
concatenated, with weights adjusted based on point cloud density. If point cloud density is low, the
patch information learned in the subsequent set abstraction layers of the first branch might have

low reliability, and the weight of the second branch could be increased in this case.

Finally, the features obtained are propagated to each input point through inverse distance weighted
interpolation between the low-resolution and high-resolution point sets, effectively passing the

learned features from each set abstraction layer to every input point.

2.4 Attention Mechanism

The attention mechanism, as proposed by(82), maps the query and a set of key-value pairs to the
output through the ”scaled dot-product attention” process. The core principle involves calculating
the similarity between the query and all keys, subsequently using these similarities to perform a
weighted summation of the corresponding values. The weights are determined by the compatibility

function between the query and the corresponding key.
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The detailed process is as follows:

1) Compute the dot products of the queries and keys;

2) Scale the dot product by dividing the square root of dy;
3) Apply the softmax function to obtain the weights;
)

4) Use these weights to perform a weighted sum of the values, producing the final output;

The formulas are as follows:

Attention(Q, K, V') = softma (QKT) Vv (2.1)
ntion(Q, K, V') = softmax .
Vi,

MultiHead(Q, K, V) = Concat(heady, . .., head,)W® (2.2)

where head; = Attention(QWE, KW/, vw})

To capture information from different representation subspaces, the Transformer(82) architecture
introduces a multi-head self-attention mechanism. Each attention head independently executes the
aforementioned computations, concatenates the results, and performs a final linear transformation

to produce the output.

2.4.1 SwinVFTR

To enhance the performance of semantic scene reconstruction, integrating attention mechanisms
into the 3D U-Net component is a viable option. This can improve the voxel-like feature extraction
block. While exploring methods to combine SwinTransformer(52) with 3D U-Net(17), we discov-
ered the SwinVFTR network(37), which effectively integrates these elements. Although originally
developed for brain tumor segmentation, its architecture is well-suited for semantic scene recon-

struction tasks. The following (see figure 2.5) illustrates its structure:
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Figure 2.5: Basic structure of SwinVFTR.(37)

The Swin Volumetric Feature-learning Transformer (SwinVFTR) architecture integrates the Swin-
Transformer with a 3D U-Net structure to address the challenges of 3D image segmentation. This
hybrid approach leverages the strengths of both transformer-based networks and 3D U-Net archi-

tectures to achieve superior performance in segmentation tasks.

The SwinVFTR network architecture begins with a channel-wise volumetric sampling technique
that preprocesses input volumes to ensure compatibility with varying depths. This sampling re-
tains spatial information while adjusting the depth dimension, ensuring that the model can handle

inputs with different depths effectively.

The encoder of the SwinVFTR utilizes a novel Swin-Transformer block. This block integrates
shifted windows multi-head self-attention (SW-MSA) to capture hierarchical local features effi-
ciently. The SW-MSA mechanism divides the input volume into smaller windows, applying atten-
tion within each window and shifting the windows to capture more global context. This approach
balances the computational complexity while maintaining high feature representation quality. Ad-
ditionally, the Swin-Transformer block in the SwinVFTR replaces the traditional multi-layer per-
ceptron (MLP) with a Multi-receptive field (MRF) residual block. This MRF block consists of
parallel convolutions: standard, depth-wise, and dilated convolutions. This design captures fea-
tures at multiple scales and enhances the block’s ability to model complex spatial patterns within

the volumetric data.

The encoded features are progressively downsampled using patch-merging layers, which combine

features from neighboring patches and reduce their spatial dimensions, effectively capturing multi-
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scale information. Each stage in the encoder consists of two Swin-Transformer blocks followed by

a patch-merging layer, ensuring the features are hierarchically aggregated.

For the decoder, SwinVFTR employs a symmetric design, using UnetrUp blocks for upsampling the
feature maps back to the original resolution. These blocks use transposed convolutions to increase
the spatial dimensions and incorporate residual connections to maintain feature integrity. The
decoder stages also use volumetric concatenation layers that merge features from corresponding

encoder stages via skip connections, ensuring that detailed spatial information is preserved.

A key innovation in SwinVFTR is the introduction of Volumetric Attention (VA) blocks within the
skip connections. These blocks enhance the feature maps by applying spatial and channel-wise at-
tention mechanisms. The spatial attention is achieved using standard and point-wise convolutions,
while the channel-wise attention is handled by depth-wise convolutions, ensuring that both spatial

and depth information is effectively emphasized.

The final segmentation map is produced through a 1x1x1 convolutional layer followed by a softmax

activation function, which generates the probabilistic segmentation of the input volume.

The SwinVFTR architecture’s design advantages lie in its ability to capture fine-grained details
through multi-receptive field processing, maintain high-resolution spatial information via efficient
skip connections, and effectively model hierarchical features through the shifted windows attention
mechanism. This combination makes SwinVFTR particularly suited for tasks requiring precise 3D
reconstruction and semantic segmentation, such as the analysis of complex structures or volumetric
data in semantic scene reconstruction, which aligns with our objectives of achieving high precision

in simultaneous dual tasks.

2.5 Class Imbalance Problem

Class imbalance, a prevalent issue in computer vision, arises when certain classes are underrepre-
sented in a dataset. This imbalance often leads to biased models that perform well on frequent
classes but poorly on rare ones. This issue is particularly prominent in applications such as medical
imaging, autonomous driving, and large-scale outdoor scene segmentation, where the distribution

of objects or features is inherently uneven.

In medical imaging, for instance, normal tissues might vastly outnumber pathological tissues, lead-
ing to models that fail to detect diseases accurately. Similarly, in autonomous driving, rare events

like pedestrian crossings occur less frequently compared to other static objects like roads and build-
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ings, causing the model to overlook critical yet infrequent occurrences.

To address class imbalance, various strategies have been developed, broadly categorized into data-
level, algorithm-level, and hybrid approaches. Data-level approaches include oversampling, which
involves duplicating instances of minority classes to balance the dataset(96), although this can
lead to overfitting. Undersampling reduces instances of majority classes to achieve balance but
risks losing valuable information. Synthetic data generation techniques like SMOTE(10)(Synthetic
Minority Over-sampling Technique) create synthetic instances for minority classes, enhancing di-

versity but potentially introducing noise if not carefully implemented.

Algorithm-level approaches consist of cost-sensitive learning(26), which assigns higher misclassifi-
cation costs to minority classes to encourage the model to prioritize these classes. This method
can be highly effective but requires careful tuning of cost parameters. Another method is class
reweighting, which adjusts the loss function to give more importance to minority classes. This ap-
proach integrates seamlessly with existing models but may necessitate extensive experimentation

to determine optimal weights.

Hybrid approaches combine data-level and algorithm-level techniques to provide robust solutions.
For example, combining oversampling with class reweighting leverages the strengths of both meth-
ods (31). Each approach has its advantages and disadvantages: data-level methods like oversam-
pling and synthetic data generation can increase the risk of overfitting and noise, respectively, while
undersampling may lead to the loss of valuable information. Algorithm-level methods such as cost-
sensitive learning and class reweighting require meticulous parameter tuning and might increase

computational complexity.

In large-scale outdoor scene segmentation and 3D reconstruction, class imbalance poses signifi-
cant challenges like the critical yet infrequent occurrences above mentioned. Class reweighting has
several benefits for these applications. It allows the model to focus on underrepresented classes
without altering the original data distribution. This approach leads to improved detection and
segmentation of rare but critical objects, enhancing the overall performance and robustness of the
model. Additionally, class reweighting can be easily integrated into various deep learning frame-
works, making it a flexible and scalable solution for addressing class imbalance in large-scale vision
tasks.

In conclusion, addressing class imbalance is crucial for developing accurate and reliable computer
vision models. While various methods exist, each with its trade-offs, combining these approaches
can provide robust solutions tailored to specific applications. Future research should continue to

explore and refine these techniques, particularly in the context of large-scale and complex environ-
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ments, to ensure comprehensive and balanced model performance.



21

3 Related Work

This chapter provides a detailed overview of the evolution of methodologies employed in the realm
of 3D reconstruction and semantic segmentation. Section 3.1 delves into the exploration of deep
implicit function based surface reconstruction. Subsequently, Section 3.2 discusses the recent ad-
vancements in the semantic scene reconstruction pipeline. Following this, in Section 3.3 and 3.4,
a general view of point feature encoding and the class imbalance problem inherrent in semantic
segmentation are separately carried out, which are the main area of concentration that ties into

the overarching theme of this thesis.

3.1 Deep Implicit Function Based Surface Reconstruction

In the field of 3D surface reconstruction, significant advancements have been made over the past
decades, evolving from the initial restoration of physical shapes of individual objects with defective
scanned digital representations to encompassing a wide variety of indoor and outdoor objects and
scenes, including the evolution of objects from static primitives to dynamic ones and non-explicit
geometries. Traditional methods, including active methods such as optical laser-based range scan-
ners, structured light scanners, LiDAR scanners, and passiv methods such as multi-view stereo,
primarily leverage various devices to rapidly execute engineering and prototyping tasks, benefiting
computer-aided design and computer graphics. However, these hardware-based data acquisition
methods pose different challenges for surface reconstruction tasks due to the varying nature of the
data they produce. (4) provides a comprehensive classification of various surface reconstruction
techniques by considering the types of data priors, the deficiencies inherent in the acquired data,
and the resulting reconstruction outcomes, which offers an overarching perspective on the advance-
ments and methodologies within the field of surface reconstruction, highlighting the strengths and
limitations of different approaches based on the nature of the input data and the desired quality of

the reconstructed surfaces.

Despite the advancements achieved by traditional methods, they still inherently possess fundamen-
tal limitations. In recent years, the latest developments in deep learning have endowed data-driven
approaches with the ability to optimize the inherent defects arising from data acquired from various

devices, thereby becoming the mainstream in research. With the burgeoning development of im-
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plicit functions, researchers have integrated deep learning techniques with these functions, resulting

in numerous outstanding methods across various domains, including surface reconstruction:

Deep Implicit Moving Least-Squares Functions(49) integrates the flexibility of point sets with the
high-quality representation of implicit surfaces, using an octree-based scaffold to adaptively gener-
ate MLS points, improving computational efficiency and reconstruction accuracy. Structured Local
Deep Implicit Functions(29) decomposes 3D shapes into a set of structured local implicit functions,
each associated with a latent vector that captures fine geometric details. The coarse structure is
defined by Gaussian functions, while the fine details are represented by local deep implicit func-
tions. This approach enhances the accuracy of surface reconstruction while improves generalization
to unseen shapes, and reduces the required network parameters, thus achieving a more efficient and
detailed reconstruction process. In contrast to (29), Multiresolution Deep Implicit Functions(13)
introduces a multiresolution framework that leverages deep implicit functions in a different manner
to capture shape features at various levels of detail, both globally and locally. Building upon (29)
, LP-DIF(86) also segments 3D shapes into local regions. However, it further enhances this con-
cept by clustering regions with similar geometric patterns and employing distinct, pattern-specific
decoders for each cluster. Additionally, a region re-weighting module is integrated to address data
imbalance issues, thereby improving the reconstruction of details in sparsely observed regions. (44)
represents another advancement based on the methodology in (29). Unlike (29), which utilizes fixed
local regions, (44) introduces dynamic code clouds and a novel loss function to guide the distribu-
tion of local codes towards regions with high geometric complexity, which dynamically optimizes
the effective positions of local latent codes, enhancing representational capacity and improving ef-
ficiency. (53) employs hierarchical feature maps and permutohedral lattices to efficiently encode
and query local implicit functions. Compared to the methods based on (29), this approach also
alms to enhance the detail and accuracy of 3D reconstruction using local implicit functions, while

offering superior scalability.

Additional notable approaches in conjunction with implicit functions to achieve 3D reconstruction

tasks include:

3DIAS(98) uses multivariate polynomials to design implicit algebraic surfaces for predefined shapes,
enabling detailed reconstruction of complex geometries with fewer parameters. (16) introduces a
two-stage network architecture combining the recently popular Transformers(82), where the first
stage employs a 3D sparse stacked hourglass network for initial voxel generation and denoising, and
the second stage uses Transformers for voxel re-localization, converting discrete voxels into precise
3D points. PointConv(93) addresses the challenge of non-uniform sampling by treating convolu-
tion kernels as continuous functions and reweighting them using density scales. MV-DeepSDF(51)

transforms the implicit space shape estimation problem into an element-to-set feature extraction
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problem, utilizing global features and latent codes from multi-sweep point clouds combined with
SDF for 3D vehicle reconstruction. (104) introduces the concept of deep implicit templates, decom-
posing a conditional deep implicit function into a template implicit function representing the mean
shape and a conditional spatial warping function that deforms this template to match specific in-
stances, allowing dense correspondences among different instances while maintaining compactness

and efficiency.

While these methods each have their own advantages, they also exhibit potential drawbacks. For
instance, (49) involves the complexity of managing the octree structure and the computational
overhead of generating and evaluating MLS points for large-scale or detailed models. (29) entails
computational costs in decomposing shapes into local elements and managing the alignment of local
implicit functions. (13) experiences increased errors in unobserved regions. (77) demands higher
memory for each voxel and introduces complexity in managing gradient updates, potentially af-
fecting large-scale reconstruction performance. (98) struggles with handling entirely new, irregular
geometries not covered by predefined shapes. (44) presents significant challenges in optimiza-
tion complexity. (53) incurs computational overhead during the feature extraction and querying
processes and etc.. In our dual task of semantic scene reconstruction, the accuracy of surface recon-
struction is a prerequisite for segmentation. Therefore, our pipeline in the geometric component
favors a method that offers high accuracy in representation while maintaining low memory con-

sumption.

3.2 Semantic Scene Reconstruction

Semantic scene reconstruction aims to jointly estimate the geometric and semantic information of a
3D scene from sparse surface measurements(58). Most methods in the literatures achieve this task
sequentially and present the results in the form of a voxel grid. Since semantic scene reconstruction
fundamentally consists of two subtasks — 3D reconstruction and semantic segmentation — the
former provides precise geometric information, which is a crucial prerequisite for the latter. Fol-
lowing the discussion in Section 3.1, which provides a clear understanding of recent developments
in 3D surface reconstruction using implicit functions, we now explore the integration of 3D surface

reconstruction and semantic segmentation.

Effectively leveraging the potential synergy between geometric and semantic information in scenes
has long been a challenging aspect of the semantic scene reconstruction task. Geometric infor-
mation can serve as prior knowledge to determine the semantic nature of entities, while semantic
labels can constrain the characteristics of associated geometries. To overcome these limitations,

recent models have made several attempts:
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These methods can be broadly categorized based on different input modalities, including monocular
(105), binocular(62), multi-view stereo(83) (92), and point clouds(14):

(83) combines a hash-based fusion approach for 3D reconstruction with volumetric mean-field in-
ference for semantic segmentation. By utilizing stereo image pairs to generate depth information,
a dense semantic 3D map is incrementally built and fused into a common 3D map. A Conditional
Random Field (CRF) framework is employed for semantic labeling, with unary potentials derived
from a random forest classifier and pairwise potentials ensuring smoothness by leveraging 3D fea-
tures such as appearance, depth, and surface normals. This method efficiently manages memory
using a hash-table-driven space allocation and effectively integrates moving objects into the recon-
struction process. However, its performance is highly dependent on the quality of depth estimation,
which is always noisy in outdoor environments. Similar to(83), (92) also uses stereo images to in-
crementally obtain depth information for building a 3D map but places greater emphasis on the

integrity of occluded regions.

(14) utilizes sparse convolutions to integrate sparse tensor representations of point clouds, predict-
ing occupancy and class labels for each voxel to semantically label the scene after incremental 3D

reconstruction.

(105) employs a variational autoencoder(VAE) framework to encode geometric and semantic infor-
mation from monocular images into a compact latent space. By optimizing low-dimensional codes
associated with overlapping images, it ensures spatial consistency in the fused label maps, which
excels at preserving spatial correlations across multiple views, generating consistent and smooth se-
mantic labels, thus overcoming the noise issues associated with independent label estimation. (36)
introduces a novel approach to reconstruct semantically labeled 3D scenes using only 2D image
annotations. By leveraging differentiable rendering, it links 2D observations with the unobserved
3D space, using RGB images and 2D semantics for supervision. Although this method achieves
state-of-the-art performance in semantic scene completion without relying on costly 3D annota-
tions, it may face challenges in handling diverse real-world scenarios and ensuring the accuracy of

3D reconstruction predictions.

(62)integrates instance segmentation, feature matching, and point-set registration to enable real-
time 3D scene perception and understanding for robots. By using YOLOvVS for object segmentation
in RGB images and mapping 2D correspondences between consecutive frames into 3D correspon-
dences via depth maps, kernel density estimation(KDE) aligns these correspondences for robust
point cloud registration. However, this method introduces complexity in segmentation and feature

matching processes and increases sensitivity to depth perception errors, particularly with transpar-
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ent or shiny objects.

Building on the foundation of a geometric component that is able to offer high precision for sub-
sequent accurate segmentation and low memory consumption requirement that makes the model
avoid the hamper of potentially limited computational resources when attempting to enhance per-
formance for segmentation tasks, influenced by S3CNet(14), we transfer our attention on the oc-
cupancy function, which has the potential to achieve the dual task without introducing techniques

that incur additional high memory consumption.

3.3 Point Feature Encoding

Point feature encoding has become a pivotal technique in 3D computer vision, enabling effective
processing and understanding of point cloud data. The primary goal of point feature encoding is to
transform the irregular, unordered structure of point clouds into a format suitable for deep learn-
ing algorithms. The following highlights the significant advancements in point feature encoding,

starting from PointNet and extending to its various derivatives and other contemporary methods:

Introduced by (68), PointNet was a groundbreaking method that directly processes unordered point
clouds without the conventional need for voxelization or rendering into images. PointNet utilizes
shared Multi-Layer Perceptrons (MLPs) and a max pooling layer to aggregate global features,
effectively maintaining invariance to input permutations. This approach demonstrates strong per-
formance in 3D object classification, part segmentation, and scene semantic parsing. Based on
PointNet, PointNet++(69) was extended, incorporating a hierarchical structure to capture local
geometric features at multiple scales. PointNet+4 recursively applies PointNet on nested parti-
tions of the pointset, significantly enhancing its capability to handle varying point densities and

complex scenes.

Then further contributions are made on dynamic feature aggregation. Proposed by (90), DGCNN
dynamically constructes a local graph for each point and applies edge convolutions to capture local
geometric relationships, which improves feature learning by adapting to the dynamic nature of

point cloud structures, leading to enhanced robustness and accuracy.

With the emergence of transformer(82), subsequent researchers attempted to embed this module
into point cloud processing to further improve the accuracy of point features. (103) developed
the Point Transformer, which integrates self-attention mechanisms to encode point cloud features,
which allows the model to capture long-range dependencies and provides robustness to variations

in point cloud density and distribution. Building on the requirement of local feature aggregation
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methods, (34) introduced FPTransformer, which utilizes local position encoding to enhance the
awareness of each point within its local shape context, improving the robustness and accuracy of

feature encoding, especially in capturing fine-grained details.

Other feature encoding techniques includ iterative and point-wise aggregation, such as PCRNet(73),
which leverages PointNet for point cloud registration. PCRNet iteratively refines the alignment
between point clouds using a loss function based on Earth Mover’s Distance(EMD), enhancing ro-
bustness and accuracy. FPConv(48) revisites local point aggregations, including MLPs, point con-
volutions, and transformers, to derive a general formulation for local feature aggregation. FPConv
introduces point convolutions with learned weights from local point coordinates, which dynamically

adjustes point-wise features based on local geometric information.

The advancements in point feature encoding, starting from PointNet and extending to its variants
and other contemporary methods, have significantly enhanced the performance of point cloud pro-
cessing in various 3D computer vision tasks. Each method has contributed unique approaches to
overcoming challenges such as handling unordered pointsets, capturing local and global features,
and ensuring robustness to input variations. These innovations continue to drive the field forward,

addressing limitations and exploring new possibilities for 3D data understanding.

However, when applying these techniques to representing large outdoor scenes with sparse point
clouds from surface measurenments as inputs, certain considerations must be made. PointNet
and its derivatives excel at handling unordered point sets and capturing global features efficiently.
However, their reliance on global pooling can cause loss of fine local details, which are crucial in
complex outdoor environments. Methods like PointNet++ and DGCNN improve local feature cap-
ture through hierarchical and dynamic graph-based structures but can be computationally intensive
and may struggle with very sparse or unevenly distributed point clouds. The ideal point feature
encoding method for large outdoor scenes should balance computational efficiency with the ability
to capture both global and local geometric details. Methods like FPTransformer, which enhance lo-
cal feature awareness while maintaining the robustness of transformer architectures, show promise.
Techniques that dynamically adjust point-wise features based on local geometric information, like
FPConv, also offer significant benefits by preserving local variations and fine details. For sparse
point clouds from mesh surface representations of large outdoor scenes, an effective point feature
encoding method should be able to handle sparse and uneven point distributions robustly, capture
detailed local geometric features without excessive computational overhead, 