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Abstract 
 

This work introduces a Hidden Markov Model 
(HMM) based technique to classify agricultural crops. 
The method recognizes different crops by analyzing 
their spectral profiles over a sequence of satellite 
images. Different HMMs, one for each of the 
considered crop classes, are used to relate the varying 
spectral response along the crop cycles with plant 
phenology. The method assigns for a given image 
segment the crop class whose corresponding HMM 
presents the highest probability of emitting the 
observed sequence of spectral values. Experiments 
were conducted upon a sequence of 12 previously 
classified LANDSAT images. The performance of the 
proposed multitemporal classification method was 
compared to that of a monotemporal maximum 
likelihood classifier, and the results indicated a 
remarkable superiority of the HMM-based method, 
which achieved an average of no less than 93% 
accuracy in the identification of the correct crop, for 
sequences of data containing a single crop class. 
 
1. Introduction 
 

Given the importance of agriculture worldwide, 
socially and economically, the availability of precise 
and efficient information about agricultural activities 
in an appropriate time interval is highly relevant for a 
number of strategic decisions. Rural producers, export 
and import agents, companies in the food industry, 
suppliers, investors and the government are some of 
the players interested in this kind of information.  

With accurate information about the status of 
different crops it is possible to develop commercial 
plans, to regulate agricultural products internal stocks, 
to make decisions on subsidies, and to draw strategies 

for the negotiation of agricultural commodities in 
financial markets.  

This work endeavours to combine two fields that 
have had a noticeable evolution in recent years, namely 
the research on multitemporal classification techniques 
using satellite imagery, and on plant phenology. In fact 
there are few reports on using phenological models to 
support the image classification process [1]. In this 
work Hidden Markov Models were used to relate the 
varying spectral response along crop cycles with plant 
phenology, for different crop classes. 

 Thus the general objective of this work was to 
evaluate the potential of Hidden Markov Models for 
crop classification from remote sensing temporal 
image sequences. Instead of relying on single date 
images, the methodology investigated in this work 
identifies different agricultural crops by analyzing the 
crop specific temporal profiles of spectral features over 
a sequence of medium resolution satellite images. 

Section 2 shows the problem characterization, 
followed by a description of the Hidden Markov 
Model (section 3). The proposed methodology is 
presented in section 4 and a performance analysis is 
presented in section 5, followed by final comments and 
conclusions. 
 
2. Problem characterization 
 
2.1. Crops and their phenological cycles 
 

The quantity of foliar area, phytomass volume and 
soil coverage temporal variations in a given area are 
determined by the planting and harvesting dates, and 
by the particular cycles of the different crops 
developed in it. The knowledge of these peculiarities 
provides the basis for understanding the spectral 
behaviors presented by different crop types in a certain 
period of the year.  
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2.1.1. Sugarcane. In São Paulo, Brazil, the sugarcane 
(SC) (Saccharum spp.) cultivation follows basically 
two cycles: one of 12 months (“one-year” sugarcane) 
and another of 18 months (“one-year-and-half” 
sugarcane). The one-year-and-half sugarcane is planted 
between January and March and the one-year 
sugarcane, between October and November. It is 
important to highlight that each sugarcane crop can be 
harvested during five or six consecutive agricultural 
cycles. For this reason the cycle is named “semi-
perennial”, which is different from grain crops’ cycles, 
because of its duration, as well as of its phenological 
dynamics. 

For areas where this crop is recently planted, a 
green mass of one-year-and-half sugarcane starts to 
completely cover the soil from October, when there is 
more heat and pluviometric precipitation; however, 
new areas of one-year sugarcane, should have full 
green coverage in April and May and then the green 
phytomass tends to increase its foliar area until the 
next harvesting period. 

Each year the period of harvesting starts in April 
and ends in November, therefore, in a same satellite 
image it is possible to find: straw from harvested crop; 
recently planted sugarcane; as well as sugarcane in the 
growth phase and in the adult phase. It is also possible 
to find exposed soil, where the agricultural area is 
prepared for planting. 

 
2.1.2. Short cycle crops (cereals). Soybean (SB) and 
corn (CO) are called “annual crops” or “short cycle 
crops”, once they can complete their phenological 
cycle in 110 to 140 days. They are planted, in general, 
in the end of October or in the beginning of November 
and they germinate about 10 days after being planted, 
beginning their vegetative growth and fully covering 
the soil surface around 60 days after the germination. 
In sequence, these crops reach the peak of green 
phytomass and then begin the grain filling process, 
when the quantity of green leaves starts to diminish, 
while the quantity of yellow leaves increases. They 
then dry out and fall, exposing again the soil 
background until the harvesting period. 
 
2.1.3. Pasture. Pasture (PS) presents different 
phenological and spectral dynamics from the other 
crops mentioned above.  These dynamics depend on 
the types of soil management used by cattlemen, 
however, in general, pastures are more dry and scarce 
between April and September. Their revigoration starts 
in the beginning of the rainy season along with, which 
increases the foliar area index and sustains the green 
vegetative vigor from November to March. 

2.1.4. Other classes. Besides these crops, riparian 
forest (RF) was also considered in this work. Other 
classes of land cover are present in the study area: 
urban areas, roads, forest and water bodies. They 
appear as few, large segments that practically do not 
change thorough the image sequence, and for this 
reason, were not treated in this work. 
 
3. Hidden Markov Models 
 

A Hidden Markov Model (HMM) [2] represents a 
doubly embedded stochastic process. In an HMM, the 
observations (vi) are regarded as symbols emitted by 
non observable states (Si), following particular 
probabilistic functions, whereby the state sequence is a 
first order Markov Chain. 
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Figure 1.  Example of a Hidden Markov Model 
(Si → states, vk → observation symbols, aij → 
state transition probability, bik → symbol 
emission probability). 

 
An HMM is illustrated in Figure 1. N is the number 

of states in the model (the individual states are denoted 
as S = {S1,…,SN}, and the state at time t as qt) and M is 
the number of distinct observation symbols per state 
(the individual symbols are denoted as V = {v1, …, 
vM}). A basic HMM consists of three sets of 
parameters:  

a) the symbol emission probabilities bjk – the 
probability that symbol vk is emitted by state 
Sj, i.e. 

Mk N j,    S t|q vb jtkjk ≤≤≤≤== 1and1]atP[  

b) the state transition probabilities aij – the 
probability of being in state Sj in the 
subsequent time instant given that the current 
state is Si, i.e. 

Ni,j,    S|qSqa itjtij ≤≤=== + 1]P[ 1
 



c) the prior probability distribution πi that the 
system is in a given state Si at the initial time 
instant (not shown in the figure), i.e. 

Ni,    Sqπ ii ≤≤== 1]P[ 1
. 

 
If a state Si can reach another state Sj, aij>0, and if 

two states are not connected, aij = 0.  
 
4. Methodology 
 
4.1. General Model Description 
 

In this work each crop class has a specific HMM. 
Phelonogical stages correspond to states and the 
observable symbols are the vectors comprising the 
digital numbers registered by the orbital sensor in each 
spectral band, along with the NDVI computed from 
bands 3 and 4 according to: 
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The basic HMM shown in Figure 2 was chosen to 

model the temporal behaviour of sugarcane, soybean 
and corn. The arrows illustrate how the states are 
temporally related. According to plant phenology, 
states PP, GR, AD and PH correspond respectively to 
stages Post-Harvesting, Prepared Soil, Growth phase 
and Adult phase respectively. 

For pasture and riparian forest there is no 
significant change in the radiometric features during 
the period covered by the images in the available data 
set. This can be explained by the fact that these 
cultures are neither planted nor harvested and are 
indeed found in the target areas for a long time. Thus a 
specific HMM is devised for these classes having a 
single state AD, which in these cases correspond to the 
adult phase  (Figure 3). 

 

 
Figure 2.  HMM used in this work for 
sugarcane, soybean and corn (PP = Prepared 
soil, GR = Growth, AD = Adult phase and PH = 
Post-harvesting). 

 

A

Figure 3.  HMM used in this work for pasture 
and riparian forest (AD = Adult phase). 
 

Even though pasture and riparian forest are actually 
not crop types, the term “crop” will be used hereafter 
to designate the set of all five classes to be recognized 
in our problem. 

Tables 1 and 2 show examples of areas of each 
crop (and phenological stage) mentioned above in the 
satellite images (RGB composition). The sample crop 
areas occupy the center of the images on the tables. 

 
4.2. Fitting the Model to the Application 
 

The problem being considered in this work deviates 
in a number of ways from the basic HMM description 
presented in the preceding sections.  

First, the symbol emission probabilities (bjk) 
depend on seasonal effects that can not be fully 
compensated in the image pre-processing phase. 
Second, the prior probability distribution (πi) is not 
constant along the year (see section 2). This happens 
because each crop has preferential months for planting 
conditioned mostly by the climate and by 
characteristics of the crop itself. In these months the 
crop is likely to be in the initial phonological states. As 
the time goes on this probability decreases, while the 
probability of being in the growth and adult stage 
increases.  So, it is safe to affirm that the prior 
probabilities will vary according to these periods. 
Third, the basic model depicted in section 3 assumes 
that the symbols are emitted at a constant time rate. In 
most real applications not all images in a sequence 
acquired at a constant frequency are usable, mostly due 
to clouds over the target geographical area. It is also 
worth mentioning that the basic model shown in Figure 
2 may also change for a larger interval between two 
consecutive images in the data set. For instance, a 
transition from PP to AD may become possible in 
these cases. Therefore, an HMM for our problem will 
have to consider distinct symbol emission 
probabilities, prior state probabilities, as well as state  
transition probability matrices for each pair of 
consecutive images in the available dataset. 

PHPP GR AD

Regarding the symbol emission probabilities, it is 
assumed throughout this paper that they have a 
Gaussian distribution. Hence, the emission probability 
density of a symbol x (a vector consisting of the 
spectral bands and NDVI) will be given by: 
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where μcs, and Σcs  denote respectively the mean 
vector, the covariance matrix for culture c and state s, 
and d is the dimension of x.  
 
4.3. Estimating parameters values for each 
model 
 

Parameter estimation is performed for each crop 
type separately in the following way. State transition 
possibilities aij are estimated for each pair of 
consecutive images in the data set. Only segment 
samples of the crop class being modeled are 
considered in the next steps. First, an accumulator 
matrix is created with rows and columns 
corresponding to states respectively in the earlier and 
in the later date. Next, for all rows and columns, the 
element at row i and column j is incremented for each 
sample segment in state  Si and Sj respectively in the 
earlier and in the later epochs. Finally the accumulator 
matrix is normalized by dividing each of its elements 
by the sum across the corresponding row. The result is 
the estimate of the transition probability matrix. 

The procedure to estimate the prior probability 
distribution πi is similar. Again, only sample segments 
of the crop class being modeled at that date are 
considered.  An accumulator vector is created having 
one element per state. The ith element is incremented 
for each training sample at state Si. Finally, the 
accumulator vector is divided by the sum of its 
elements. The result is taken as the estimate of the 
prior state probability.  

As mentioned before, the problem of estimating 
emission probability turns into estimating mean vectors 
and the covariance matrices for each image. Instead of 
taking segments as samples, we consider each pixel 
within a training segment as a training sample. This 
increases the amount of samples and provides more 
accurate estimates that could be otherwise a major 
performance degradation factor. Mean vector estimates 
are simply computed as the average of the training 
vectors representing the crop type and the 
phonological stage at that date.  Similarly we use the 
sampled covariance [3] to estimate the covariance 
matrix.  
 
4.4. Classification 
 

Once the HMM have been established and their 
parameters estimated, the classification of an image 
segment is done in the following way. The segment is 

represented at each date by a symbol vector 
comprising its average spectral values and NDVI 
observed at that date. The classifier computes for each 
model, the probability that the corresponding crop 
class emits the observed sequence of symbol vectors. 
The segment is assigned to the class whose model 
delivers the highest emission probability. A detailed 
description about how emission probabilities are 
computed in an HMM can be found in [4]. The 
algorithm that solves this problem also permits to infer 
for each model the most probable state at each point in 
time. 

 
5. Performance analysis 
 
5.1. Data Set 
 
5.1.1. Study area. The study area corresponds to three 
cities in the State of São Paulo, Brazil: Ipuã, Guará e 
São Joaquim da Barra (inside a rectangle defined by 
the following coordinates: 20º16’30”S to 20º40’00”S x 
47º37’36”W to 48º13’50”W), covering an area of 
124.100ha (Figure 4). Agriculture is the main activity 
in this area. The main crops found are: sugarcane, 
soybeans and corn. This region has a plane to slightly 
undulated relief, a tropical climate with dry winter, 
with annual mean temperature of 22,9ºC and annual 
mean precipitation of 1480mm. 
 

Table 1: Soybeans, corn and sugarcane  
areas in the satellite image. 

 



 
Table 2: Pasture and riparian forest areas 

in the satellite image. 

 
 

5.1.2. Image Sequence. The dataset contains a total of 
12 images from the Landsat satellite, orbit/point WRS 
220/74, from 2002 to 2004 (Table 3), from 
TM/Landsat-5, as well as from ETM+/Landsat-7 
sensors [5].  Bands 1 to 5 and 7 were used in this work.  

 

 
Figure 4. Study area in state of São Paulo, 
Brazil. 

 
Table 3. Images available 

 2002 2003 2004 

January  (ETM+) 
08/01/03 

(TM) 
19/01/04 

February  (ETM+) 
09/02/03 - 25/02/03  

April  (ETM+) 
14/04/03 - 30/04/03  

May  (ETM+) 
16/05/03  

July  (TM) 
27/07/03  

August  (TM) 
12/08/03  

September (ETM+) 
02/09/02   

October (ETM+) 
20/10/02 

(TM) 
15/10/03  

 
5.1.3. Image pre-processing. The Landsat images 
were in Geotiff format and for the geometric 
corrections, 13 control points gathered by GPS were 
used. The nearest neighbor resampling method was 
applied, because it well preserves the original image’s 
radiometry [6]. 

A correction technique was applied to the 
multitemporal images to diminish atmospheric effects, 
once that the atmosphere, by its spread-spectrum, 
absorption and refraction phenomena, affects the 
radiance measured by the orbital sensors. The Dark-
object subtraction technique, developed by Chavez [7], 
was applied. 

As the same object may present distinct digital 
values in different acquisition dates’ images, due to 
difference in the solar angles and to spread-spectrum 
effect, multitemporal groups of images must be 
radiometrically normalized. In this work, this process 
was done according to the methodology proposed by 
Gürtler et al.[8]. 

Classification algorithms are based on the spectral 
appearance of the objects being classified in images 
from different dates, so the grayscale values were 
converted to reflectance values, which have a physical 
meaning, in order to correctly represent the different 
objects and their conditions at the images’ acquisition 
moments. This conversion was based on the 
methodology proposed by Luiz et al. [9]. 

 
5.1.4. Image Segmentation. Each image in the data 
set was individually segmented using the watershed 
based method detailed in [10]. The values of the 
segmentation parameters were selected after a series of 
trials-and-errors, till the outcome was visually 
consistent considering all images of the data set. It is 
worth mentioning that the segment contours generally 
do not match through the image sequence, although the 
images have been previously co-registered. 

All segmentation algorithms involve parameters 
that must be adjusted so as to obtain the meaningful 
image objects in the particular application. This task is 
usually done (as in our case) by a photo-interpreter, 
who in this way, ultimately adapts the selected 
segmentation algorithm to the application needs. For 
this reason, in our target application, the segmentation 
method ended up not influencing significantly the final 
result.  A region growing segmentation algorithm, for 
instance, would probably be also appropriate in this 
case. 
 
5.1.5. Reference Data. A total of 316 reference image 
locations were selected in the study area and two 
experts classified them visually in each image 
indicating the crop class and corresponding 
phonological stage. First, the two experts worked 
individually, and each one of them interpreted all 316 
reference segments. Then, both experts worked 
together, in order to conceive a consensus 
classification result. To accomplish this task, both 
results were compared, and when they differed, the 



experts considered again the multitemporal image 
sequences, and decided on a final classification. Apart 
from that, there was also information gathered in two 
field works, taken place in March/2003 and August 
2003, to aid the experts.  

The segments enclosing each of the 316 image 
locations in each date were used to build the training 
and testing sets. Each segment was split in two parts 
with roughly the same amount of pixels. One of these 
parts was used for training and the other part for 
testing.  

 
5.2. Experiment Results 
 

For all the experiments there was a total of 7 
attributes (6 spectral bands and NDVI). 

The first experiment aimed at determining the set 
of n attributes which resulted in the best classification, 
for n varying from 1 to 7.  

 
Table 4. Optimum set o n spectral attribute 

and corresponding classification 
performance. 

Number of 
spectral 
features 

Optimum set of  
spectral features 

Average Class 
Accuracy (%) 

1 NDVI 84,47 
2 4 NDVI 86,51 
3 4 5 7 89.92 
4 2 3 5 NDVI 89.95 
5 1 2 4 5 7 91.89 
6 1 2 3 4 5 7  92.72 
7 all 91.22 

 
In this experiment we determined by exhaustive 

search the optimum set of n spectral features, for n 
varying between 1 and 7. Table 4 summarizes the 
results. With the NDVI alone the HMM method 
achieves approximately 84%. By adding the remaining 
6 spectral features to the NDVI the performance 
increases about modest 7%. Interestingly, the highest 
performance reported in Table 4 was achieved with 6 
features. These features (bands 1, 2, 3, 4, 5 and 7) were 
the ones used in all the following experiments. 

A second experiment aimed at identifying crop 
types, as well as the phenological stages during the 
dates in the test sequences. 

For this experiment, there was only one crop type 
per sequence. 

Table 5 and 6 show the accuracies and the 
confusion matrix for crop class classification 
respectively. These tables show that the method 

performed well for all crop classes, i.e. with 93% 
average class accuracy.  

 
Table 5. Crop classification accuracy. 

Class Accuracy (crops) 
Crops Rates (%) 

Soybeans (SB) 95 
Corn (CO) 90 
Sugarcane (SC) 96 
Pasture (PS) 92 
Riparian forest (RF) 91 
Overall accuracy:   95 
Average class accuracy: 93 

 
Table 6. Crop classification confusion matrix. 

Confusion matrix (crops) 
 SB CO SC PS RF 

SB 95 0 4 1 0 
CO 2 27 1 0 0 
SC 2 1 191 4 0 
PS 0 0 1 23 1 
RF 0 0 2 1 29 

 
Table 7, 8 and 9 refer to stage identification, 

considering all the sequences available and only 
sequences correctly identified by the HMM 
classification model separately. 

Even if recognizing the phonological stage is not 
the main interest, looking at Table 7 helps 
understanding how the model behaves. The 
phenological stages were also well identified, with the 
exception of the Growth phase.  

This can be explained by the temporal evolution of 
the crops throughout the phenological cycle. 

During the prepared soil, adult and post-harvesting 
phases, there is no significant changes in the crop’s 
spectral response. However, the spectral response of 
the growth phase is continuously changing from 
prepared soil to adult-phase. So its spectral response 
could be close to the response of these other two 
stages, or something in between, which can lead to 
misclassification.  

Tables 8 and 9 confirm this interpretation, as the 
confusion matrices shows that the growth phase was 
often misclassified as adult phase and prepared soil. 

This varying behaviour along the time can not be 
properly modeled by a single Gaussian distribution of 
the spectral response vectors. This reasoning suggests 
that the growth phase could be better recognized by 
looking at the temporal derivative instead of the 
absolute values of the spectral response. 

When comparing both columns in Table 7, it is 
clear that the results for all sequences available and for 



only the sequences correctly identified do not diverge 
too much. This was expected, once the crop 
recognition rates were high, 93% (as shown in table 5). 

 
Table 7. State classification accuracy. 

Class Accuracy (states) (%) 

States 
Sequences 
correctly 
identified 

All 
sequences 
available 

Post-harvesting (PH) 97 77 
Prepared soil (PP) 80 55 
Growth phase (GR) 57 95 
Adult phase (AD) 96 96 
Overall accuracy: 88 87 
Average class accuracy:  82 81 

 
Table 8. State classification confusion matrix 

considering only the sequences correctly 
identified. 

Confusion matrix (states) 
 PP GR AD PH 

PP 437 37 31 39 
GR 54 229 111 7 
AD 15 64 1847 4 
PH 2 1 5 235 

 
Table 9. State classification confusion matrix 

considering only the sequences correctly 
identified. 

Confusion matrix (states) 
 PP GR AD PH 

PP 452 39 52 41 
GR 56 231 129 7 
AD 20 78 1914 6 
PH 2 1 8 239 

 
A final experiment was carried out for comparison 

purposes. The aim was to assess how a single-date 
approach would perform under similar conditions. It 
can be demonstrated that for single-date sequences the 
HMM devised in this work turns into a bank of 
maximum likelihood classifiers, where each crop type 
is represented by as many classes as the number of 
phenological stages. 

Table 10 shows the results. When considering 
samples in any phenological stage, the average class 
accuracy was about 70%. 

The experiment was repeated 3 times taking away 
samples respectively in stages PP, PH, and GR, which 
are in this order less characteristic of the crop classes. 
The best result obtained in these experiments was 
74%. 

 

Table 10. Performance for single-date 
sequences. 

Phenological states present in the 
sample 

Average class 
accuracy (%) 

PP, GR, AD 70 , PH 
GR, AD, 69  PH 

GR, A 71 D 
AD 74 

 
Recalling the perf eported in Table 5, it 
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6. Conclusion 
 

T
Markov Models
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ndsat images for 5 crop types, indicated a 
remarkable superiority of the HMM-based method 
over a monotemporal maximum likelihood 
classification approach. 

An analysis of the experimental results revealed 
that the performance of HMM-based classifier was 
severely impacted by th

some crop types. Hence, even better results could 
have been achieved if a more representative  training 
set were available. 

The HMM approach also performed well to 
recognize phenological stages. The exception was the 
growth-phase, whic

pared-soil and adult-phase. This observation 
suggests that symbol vectors used to characterize the 
growth-phase should take into account not only the 
absolute spectral values but also their variation along 
the time. 

For this work, only sequences of data associated to 
one crop type were considered. It is planned for future 
an analysi

uences containing samples of more than one crop 
type. 
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